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Abstract

Abstract of thesis submitted by A. O. V. Le Blanc for the Degree of Doctor of Philosphy,
and entitled Leśniewski’s Computative Protothetic. Submitted January, 1991.

The logician StanisÃlaw Leśniewski devoted most of his academic life to the develop-
ment of a system of foundations of mathematics, which consists of three deductive theories:
protothetic, ontology, and mereology. Protothetic is the most general of these theories,
logically prior to the others; it has been described by its creator as a unique extension of
the classical ‘theory of deduction’ or ‘propositional calculus’, though this theory differs from
more usual versions in many respects. The ‘standard’ system of protothetic is developed
by a rule of procedure corresponding to the traditional style of development incorporating
substitution and detachment, but including directives for definition and extensionality.

Leśniewski also developed systems of protothetic whose rule of procedure does not
contain directives for substitution or detachment, and whose style of development has been
described as ‘computative’ or as involving ‘automatic verification’. The directives may be
said to resemble Peirce’s zero/one verification method, though they are extended to allow
verification and rejection of expressions containing variables in all semantic categories, and
having various numbers of possible ‘values’. Only an informal summary of Leśniewski’s
work on these systems survives.

This thesis examines computative protothetic historically, informally, and formally.
It contains a set of directives for a system of computative protothetic which is as close as
possible to the lost directives of Leśniewski’s own systems.
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1. Introduction

This work aims to describe and present the systems of computative protothetic as precisely
as possible. The original systems of computative protothetic have been lost. Only a brief
sketch of them survives; it is incomplete and, in many respects, ambiguous. We shall resolve
these ambiguities in a manner which is as close as possible to the spirit of the original systems
of computative protothetic.

Leśniewski believed that many methods should be used to present a deductive theory
as clearly as possible. We shall employ the following methods, all of which Leśniewski himself
used in various publications and in his lectures: historical summary, informal description,
comparison with other deductive theories, comparison between equivalent systems, informal
and formal presentation of the system, and proofs of metatheorems about systems. The
combined effect of these tactics should be a sharp focus on systems of computative proto-
thetic, making them more accessible to logicians and philosophers who are unfamiliar with
Leśniewski’s work.

This introduction presents general information which we need if we are to understand
what protothetic is.

1.1. Leśniewski’s deductive theories

The logician StanisÃlaw Leśniewski (1886–1939) devoted the latter decades of his life
to the development of a system of foundations of mathematics1. The system consists of
three deductive theories: protothetic, ontology, and mereology. Leśniewski claimed that the
combination of these theories formed ‘one of the possible foundations of the whole system
of mathematical disciplines’2.

The theory of parts and of collections or wholes actually consisting of their parts is
named ‘mereology’, which means the ‘science of parts’3. A ‘collection’ in this sense is unlike,
for example, a ‘set’ in contemporary mathematics or a ‘species’ in medieval philosophy. One
can easily define in mereology the terms ‘in’ or ‘on’ and ‘point’4, so that this theory can
serve as the basis for systems of geometry5. In 1916 Leśniewski claimed that mereology’s
term ‘manifold’ [mnogość ] fulfilled the essential conditions which Cantor wished to hold of
a ‘Menge’6. Mathematicians have developed from the ideas of Cantor and others a quite
different theory, now known as ‘set theory’. Many terms appear in ‘set theory’ which Leś-
niewski used in completely different senses in his lectures and publications. Sometime after

1 BIRD75 and LEJEWSKI67 contain general information about Leśniewski and his work. The
Bibliography contains full references for all cited works.

2 LEŚNIEWSKI27, p. 165.
3 The fundamental sources for mereology are LEŚNIEWSKI28A, LEŚNIEWSKI29A, LEŚNIEWSKI30A,

and LEŚNIEWSKI31A. SOBOCIŃSKI55 contains an introduction to mereology in English. For the
shortest known axiom systems and for a list of the major works on mereology see LEBLANC83.

4 The term ‘point’ is used here in the geometrical sense. Leśniewski preferred to speak of a
point-moment.

5 SOBOCIŃSKI49, p. 12, and LUSCHEI62, p. 150.
6 LEŚNIEWSKI16, p. 5.

1



2 1.1. Leśniewski’s deductive theories

1923 but before 1927 he began to abandon this terminology in order to avoid unnecessary
confusion7. At that time he coined the word ‘mereology’.

Many terms appear in mereology which cannot be defined by means of the primitive
terms of the system. Some of them can be defined with the help of the term ‘is’. Leś-
niewski saw these terms as part of a theory more general than mereology and logically
prior to it. This theory of objects, within which existence can be discussed, is based in its
standard formulation on the primitive term ‘is’, so it seems appropriate to call it ‘ontology’,
which means the ‘science of being’. In 1920 Leśniewski constructed the first axiom system
for ontology8. He describes it as a modernised form of ‘traditional logic’ whose content
resembles that of Schröder’s ‘Calculus of Classes’, if one regards this as including the theory
of ‘individuals’9. The fundamental terms and operations of the theory of numbers can be
defined in ontology10, so that it can serve as the basis for arithmetic.

Many terms appear in ontology which cannot be defined by means of the term ‘is’.
They are part of a theory more general than ontology and logically prior to it, the theory
which Leśniewski called ‘protothetic’11, which means ‘concerned with first or basic theses’.
In 1922 Leśniewski constructed the first system of protothetic, in which all these terms are
defined12. He describes this theory as the most fundamental logical and mathematical the-
ory13, a unique extension of the classical ‘theory of deduction’ or ‘propositional calculus’14.
The nature of the extensions incorporated into protothetic will be explained later.

Leśniewski and his followers have investigated the foundations of his deductive theo-
ries extensively. They have constructed many mutually equivalent systems of protothetic,
ontology, and mereology15. These systems are based on various axioms, often containing
different primitive terms. Some systems, in particular systems of ontology, have directives
(rules of procedure) which differ from the ‘standard’ directives of protothetic and ontology16.
Changes in the directives alter the ‘deductive structures’ of the systems to which they apply.

7 LEŚNIEWSKI38, p. 57. Although he had coined the word ‘mereology’ by 1927, he was still
referring to it as the ‘theory of classes’ in the following year; cf. LEŚNIEWSKI28.

8 LEŚNIEWSKI31A, pp. 158–9.
9 LEŚNIEWSKI27, p. 166. The origins of ontology are discussed in LEŚNIEWSKI31A, pp. 153–

70. Introductions to ontology in English can be found in LEJEWSKI58 and in HENRY72. The
fundamental theorems of ontology are proved in SOBOCIŃSKI34. The directives of ontology can be
found in LEŚNIEWSKI30.

10 Cf. LUSCHEI62, p. 148, and the references given there.
11 This term had been coined by 1927. Previously Leśniewski called the theory ‘logistic’, but

does not seem to have used this term (except when referring to his earlier usage) after 1928; cf.
LEŚNIEWSKI28.

12 LEŚNIEWSKI29, p. 36. The fundamental sources for protothetic are LEŚNIEWSKI29,
LEŚNIEWSKI38, LEŚNIEWSKI39, SOBOCIŃSKI60 with its continuations, and SÃLUPECKI53.

13 LEŚNIEWSKI29, p. 14.
14 LEŚNIEWSKI38, pp. 4–5.
15 Examples of systems of protothetic can be found in SOBOCIŃSKI60, SOBOCIŃSKI61,

SOBOCIŃSKI61A, and LEBLANC85. Examples of systems of ontology can be found in LEJEWSKI58 and
in LEJEWSKI77. Examples of systems of mereology can be found in LEŚNIEWSKI30A, LEŚNIEWSKI31A,
LEJEWSKI55, and LEBLANC83.

16 The directives of the standard system of protothetic �5 are specified in LEŚNIEWSKI29,
pp. 59–78. Nonstandard systems of protothetic are discussed in LEŚNIEWSKI29, pp. 35–50. The
directives of the standard system of ontology appear in LEŚNIEWSKI30. Nonstandard systems of
ontology appear in LEJEWSKI58 and LEJEWSKI77.



1.1. Leśniewski’s deductive theories 3

Hence these systems provide new perspectives from which the underlying theories can be
studied.

In their ‘official’ forms, Leśniewski’s deductive systems employ a traditional sub-
stitution and detachment style of development. However all deductions in ontology and
mereology published by Leśniewski and his followers use a variety of ‘natural deduction’.
Leśniewski believed that this informal style of reasoning conformed more closely to his logi-
cal intuitions, and that the more formal systems in fact codified these intuitions17. In other
words, he regarded his informal proofs as outlines of formal proofs in the ‘official’ systems,
but historically the axioms and directives of his ‘official’ systems grew from his informal
proofs and his philosophical reflections. He constructed formal systems of both mereology
and ontology long before he formalised these theories; that is, he wrote axioms and proved
theorems from them using his style of ‘natural deduction’18.

1.2. Formalised deductive systems

Leśniewski was most careful to distinguish between formal and informal language.
Formal language is characterised by the use of technical vocabulary and by extreme care in
the use of words. Informal language includes everyday words and expressions. The drawing
of comparisons occurs only in informal language. Quotation marks occur only in informal
language, and they are used in at least two ways: to form common names for words and
expressions to which reference is made, and to indicate terms and expressions which are
not used in accordance with Leśniewski’s formal terminology. In cases of particular danger,
Leśniewski emphasises that something is not stated in formal language by using warning
phrases such as these: ‘sketch’, ‘outline’, ‘a general characterisation’, ‘I have convinced
myself’, ‘with no pretence to exactness’, ‘so-called’, ‘freely speaking’, etc. We shall attempt
to exercise the same care.

A system consists of a series of sentences called theses. Theses are not abstractions
or ‘propositions’ but material objects produced by human activity in a particular place.
The theses of a system must be finite in number, but this number usually increases in the
course of time as we add new theses to the system. A philosophical book might be an
example of a formal system. In ancient Greek the term ‘system’ can mean a collection of
objects. Leśniewski may have been influenced by Dedekind, who, according to Frege and
Leśniewski19, used it in the sense of a collection of objects in DEDEKIND88. David Hilbert
may have invented and certainly popularised the phrase ‘axiom system’20.

A deductive system is a formal system which begins with axioms and which grows by
adding to the system theses which are in some way legitimate additions. Most legitimate
additions might be described as inferences or deductions from earlier theses, but in many
cases this terminology seems inappropriate. For example, we may add definitions to a
deductive system, but it is not reasonable to say that a definition is an inference. Euclid’s
Elements is an example of a deductive system.

17 Cf. LEŚNIEWSKI29, p. 78.
18 Examples are found in LEŚNIEWSKI16 and in LEŚNIEWSKI27 and its continuations.
19 LEŚNIEWSKI27, pp. 191–2.
20 The earliest example of the phrase ‘axiom system’ currently known to me occurs in a letter

of Hilbert’s in 1899; see FREGE76, p. 65.



4 1.2. Formalised deductive systems

A deductive theory is an abstraction: we say that a number of mutually equivalent
deductive systems express or embody the same theory. Thus Euclidean geometry is a
deductive theory embodied in all deductive systems which are equivalent in content to the
system of Euclid’s Elements.

A formalised system is a deductive system with directives or rules of procedure. These
should determine unambiguously whether or not it is legitimate to add a given expression to
the system as a new thesis. Frege’s Grundgesetze21 contained the first formalised deductive
system. Leśniewski remarked that the deductive system of the Grundgesetze is superior to
those created by later logicians because it was so carefully formalised that one can prove that
the system is inconsistent22. In the deductive systems of Chwistek and of von Neumann,
he showed how to introduce contradictions while observing all of the restrictions stated
explicitly by the authors in their directives23.

The formalisation of a deductive system requires the formal statement of its directives.
Directives which are stated informally are very likely to be unclear. Clear directives require
special technical terms which must be carefully defined. For example, one directive of the
‘standard’ system of protothetic�5 states that if A is the last thesis belonging to the system
of protothetic, you may add an expression B to the system as a new thesis immediately
after A if for some C — ‘B ε cnsqsbstp (A,C)’24. We can interpret this last expression
as ‘B is derivable from C by means of a correct substitution in protothetic with respect to
A’25. The term ‘cnsqsbstp’ is defined in a series of ‘terminological explanations’ with the
help of other terms, such as those which can be interpreted as ‘a variable bound by B in
C ’, ‘a function’, and ‘a term in C which is suited to be a constant of protothetic relative
to B ’. The definition of each such term must tell us how to determine whether or not the
term applies to a given expression by performing a ‘combinatorial’ decision procedure. We
must be able to complete this procedure in a finite number of steps, and without needing
to examine any expressions except those belonging to some given finite domain26.

Leśniewski’s method of formulating directives is one of his greatest contributions to
logic. A deductive system constructed according to his methodology is particularly well
suited to formal metalogical investigations.

1.3. Semantic categories

The characteristic concept of semantic categories in Leśniewski’s systems corresponds
in some respects to the ‘theory of types’ in the system of Whitehead and Russell27. Discover-
ies early in this century convinced most logicians of the need for something like Whitehead

21 FREGE93 and FREGE03. One might argue that Frege’s earlier work Begriffsschrift contained
the first formalised deductive system, but its directives are not specified with the same care as
those in the Grundgesetze. Cf. FREGE79.

22 I learned of this unpublished remark from Prof. CzesÃlaw Lejewski. Cf. LEŚNIEWSKI27, pp.
166 and 168, and LEŚNIEWSKI29, pp. 78–81.

23 LEŚNIEWSKI29, p. 79.
24 LEŚNIEWSKI29, p. 76.
25 Cf. LEŚNIEWSKI29, p. 73.
26 Cf. LEŚNIEWSKI31, p. 301.
27 WHITEHEADRUSSELL10, pp. 37–65.



1.3. Semantic categories 5

and Russell’s theory of logical types. In 1921 Leśniewski constructed his own ‘theory of
types’, which he later described as a simpler but more general version of Whitehead and
Russell’s theory28. He said little about this theory beyond mentioning that it used different
shapes of parentheses29 and commenting that

Even at the moment when I constructed it, I considered my ‘theory of types’ as
merely an insufficient mitigant [Palliativ ] which, without threatening me with the
‘antinomies’, would at least temporarily enable me . . . to use all the kinds of function
variables which I wanted to use30.

In 1922 he replaced this theory with his concept of ‘semantic categories’, which resem-
bled the theory of types in its formal consequences, but which had a completely different
philosophical basis31. The formal similarity between Leśniewski’s ‘theory of types’ and his
‘concept of semantic categories’ must have been very close, and Professor Lejewski seems
to give the best explanation of the difference between them:

It is more likely than not that the notion of <a> logical type as a kind of extra-
linguistic entity appeared to Leśniewski to be highly suspicious, and his logical and
philosophical conscience ceased to worry him only when he saw that instead of postu-
lating hierarchies of logical types he could talk about hierarchies of linguistic expres-
sions32.

Leśniewski presented his concept of semantic categories only as applied to the direc-
tives of protothetic and ontology. He never published a complete philosophical discussion of
the subject, though his followers have often discussed it in relation to natural languages33.

In very informal terms, we may say that Leśniewski classifies some expressions de-
pending on the way in which they have meaning. A sentence has meaning by being true
or false, and in this respect all sentences belong to the same semantic category. In formal
languages there exist sentence-like expressions which are neither true nor false, but which
must be regarded as belonging to the same category as sentences. For example, a proposi-
tional variable is not a sentence, because it is neither true nor false, but it belongs to the
same category as sentences.

Another category recognised by Leśniewski is the category of names, which have
meaning by attempting to refer to objects. He makes no distinction of category between
common and proper names; in this respect Leśniewski abandons the tradition of Frege and
returns to the approach of late classical and mediæval Aristotelian logicians. Once again,
variables and other expressions which are used like names belong to the same semantic
category as names, even though they clearly do not name anything. If we compare the two
sentences

If Fido is a dog, then Fido has fleas.
For all A — if A is a dog, then A has fleas.

28 LEŚNIEWSKI29, p. 13.
29 LEŚNIEWSKI29, p. 44.
30 Ibid.
31 LEŚNIEWSKI29, p. 14.
32 LEJEWSKI65, p. 190.
33 See AJDUKIEWICZ35, LEJEWSKI65, and LEJEWSKI79. LEJEWSKI65 contains a particularly good

informal introduction to semantic categories.
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we can see that the variables ‘A’ function in much the same way as the corresponding names
‘Fido’, even though we cannot claim that the two variables name any objects.

When we recognise the categories of sentences and of names, we see that in some
sense the expressions in them ‘have meaning’ in quite different ways. After reflecting on the
difference, Leśniewski decided that meaningful terms or expressions which accept arguments
of different semantic categories must themselves belong to different semantic categories. For
example, suppose we have two sentences in a formal language:

Φ(Fido)
Φ(it is raining)

Leśniewski was unable to conceive of the two ‘Φ’s having the same meaning when one
accepts a name argument and the other accepts a sentence argument.

In general in Leśniewski’s systems there are two and only two basic categories: sen-
tences and names. (No terms or expressions in systems of protothetic belong to the category
of names or to any category derived from that category.) Other categories are introduced as
categories of functors, which are expressions accepting a specified number of arguments to
form a complete function. This complete function belongs to some specified semantic cate-
gory. Each argument of the function must belong to some specified category. An expression
in the category of sentences may appear as an entire thesis, as the contents of the scope
of a quantifier, or as an argument of a function. An expression in the category of names
may appear only as an argument of a function. Any category in the system except that of
sentences and that of names may contain expressions which are the functors of functions
and expressions which are the arguments of functions.

The concept of semantic categories led Kazimierz Ajdukiewicz to develop his index no-
tation, which is convenient for naming and referring to semantic categories34. The following
is a recursive ‘definition’ of a legitimate index:

(1) The letter ‘s’ is a legitimate index.

(2) The letter ‘n’ is a legitimate index.

(3) A ‘fraction’ is a legitimate index if it has one ‘numerator’ which is a legitimate index,
and one or more ‘denominators’ each of which is a legitimate index.

The index ‘s’ represents the semantic category of sentences. The index ‘n’ represents
the semantic category of names. A ‘fraction’ represents a functor which, when completed
with arguments in the respective semantic categories represented by its ‘denominators’,
forms a function in the semantic category represented by its ‘numerator’. Thus, for example,
the functor of propositional negation belongs to the category with the index ‘ss’. The
propositional functors of implication, alternation, conjunction, and equivalence belong to
the category with the index ‘ s

s s’. In the English sentence ‘This is a green house’, the word

‘is’ has the index ‘ s
n n’, and the word ‘green’ has the index ‘nn’, at least if we analyse the

sentence in accordance with traditional grammar.

It is impossible to have a functor which belongs to the same semantic category as
one of its arguments. If such a function existed, its index would need to be the same as

34 This notation was first introduced and used in AJDUKIEWICZ34, p. 225. A more accessible
account can be found in AJDUKIEWICZ35.
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the argument’s index, and the whole ‘fraction’ would need to be equal to a proper part of
the ‘fraction’. Therefore the directives of Leśniewski’s systems, by enforcing the concept of
semantic categories, prevent certain contradictions which have been described as ‘vicious
circle paradoxes’35.

Leśniewski says that although his concept has this effect of preserving the consistency
of his systems, ‘I would feel myself forced to accept it if I wanted to speak at all sensibly
[überhaupt mit Sinn] even if there were no antinomies’36. In its formal consequences it
resembles the ‘theory of types’, but the concept of semantic categories is more closely con-
nected on its intuitive side with Aristotle’s categories, with the parts of speech of traditional
grammar, and with Husserl’s ‘categories of meaning’ [Bedeutungskategorien]37. Though the
term ‘semantic category’ echoes or even translates Husserl’s term, the concept appears closer
to that of parts of speech38.

1.4. Definitions in deductive systems

Many logicians unfamiliar with Leśniewski’s work have particular difficulty in accept-
ing the rôle of definitions in his systems. We must examine definitions briefly without
attempting an extended defence of his views.

Non-primitive symbols often appear in symbolic expressions. Such symbols can be
introduced informally or formally. Leśniewski uses non-primitive symbols of both kinds in
his published works.

The particular quantifier ‘
’ is an example of a symbol introduced informally into
ontology and mereology. Statements in publications of Leśniewski and of his followers
occasionally explain that in the ‘official’ systems of ontology and mereology there is no
symbol corresponding to ‘
’. Informal expression of the type ‘[
x]�f(x)’ always correspond

to expressions of the type ‘.B&x'(.Af@xTU)V’ in the ‘official’ systems; the latter expressions

contain only universal quantifiers and correspond to informal expressions of the type ‘�[x]��
f(x)’39. We may say that the particular quantifier is informally defined by such statements.
Neither the informal ‘definition’ nor the symbol it introduces actually belong to the system
in question.

Some logicians would prefer to have all non-primitive symbols defined informally.
Thus, for example, ‘p�q’ may be defined to be an informal alternative for ‘�pq’. But in
Leśniewski’s systems there are contexts in which ‘�’ may appear, but not in an expression
such as ‘p�q’. For example, we can define a functor ‘Φ’ which requires one argument in the
semantic category of ‘’. We can interpret ‘Φ<>’, but how can we interpret ‘Φ<�>’?
One might argue that the latter expression could be interpreted by using the definiens of
‘�’ in the definiens of ‘Φ’, but this does not work if we have a variable ‘φ’ in the same
semantic category as the constant ‘Φ’: the expression ‘φ<�>’ is uninterpretable because
there is no symbol or expression actually in the system which corresponds to ‘�’; there are

35 WHITEHEADRUSSELL10, pp. 37–8 and 60–5.
36 LEŚNIEWSKI29, p. 14.
37 Ibid.
38 LEJEWSKI65, p. 191.
39 For example LEŚNIEWSKI30, p. 114.
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only expressions which correspond to entire expressions of the type ‘p�q’. On the other
hand, if we actually introduce the functor ‘�’ into the system, it can legitimately appear
in any appropriate context. Sometimes certain results can then be proved which are not
provable unless ‘�’ (or some other term) is formally introduced. For example, we might be
able to prove that

[
f ]�[pq]�p��f(p, q)

Hence a system in which there is a formal definition of ‘�’ can be stronger than a system
‘in’ which ‘�’ is informally ‘defined’ but does not formally exist. Some definitions play an
essential role in proving theses which do not contain the defined term and were meaningful
before the definition was added to the system. These ÃLukasiewicz called creative defini-
tions40, though earlier writers used this phrase in a different sense. Creative definitions
exist in standard systems of protothetic and ontology. There are no creative definitions
in standard systems of mereology41, and there are no creative definitions in computative
protothetic.

There are two ways by which logicians have added a term formally to a deductive
system as a new symbol: by adding new directives to the system, and by adding new theses
to the system.

A new directive, such as a rule of replacement42, can be added to a formalised system
only if the directives permit it. That is, there must be a directive which allows the addition
of new directives. This definition directive must allow us to determine unambiguously and
in a finite number of steps whether it is legitimate to add any new (replacement) directive
to the system. The added directive must allow us to determine unambiguously and in a
finite number of steps whether it is legitimate to add any expression to the system as a
new thesis. Moreover, the added directive must guarantee that the new term it introduces
is completely defined, in the sense that every meaningful expression in the system which
contains the term has a determinate meaning and does not violate the system’s consistency.
Finally, the definition directive must be complete, in the sense that it must enable us to
add to the system replacement directives for all possible defined terms. At the present time
we know of no way to formulate such a definition directive43.

Alternatively, as in Leśniewski’s standard systems, we can have a definition directive
which permits us to add to the system new theses which serve as the definitions of additional
terms. In the standard systems a definition, once it has been added, is treated just like any
ordinary thesis, but in computative protothetic there are certain directives which refer to
previous definitions in a special way.

Some logicians and mathematicians are horrified when they hear of such definitions.
They have heard too often statements like this:

40 ÃLUKASIEWICZ39; MCCALL67, p. 113; ÃLUKASIEWICZ70, p. 275. This sense of ‘creative’ may be
due to Leśniewski, who appears to use it in ÃLUKASIEWICZ28, p. 178.

41 This is not difficult to prove, but it does not seem to be widely known. Professor Lejewski
has pointed out that when ontology is used as a basis for other theories, the axioms of these theories
may allow us to prove theorems which do not contain any terms added to our vocabulary by the
later theories, but which are not provable from the axiom system of ontology alone. In this sense
one may say that, for example, the axiom system of mereology is ‘creative’ with respect to ontology.

42 This terminology is used in ÃLUKASIEWICZ29, p. 53.
43 Leśniewski says this in ÃLUKASIEWICZ28, p. 178.
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. . . a definition is, strictly speaking, no part of the subject in which it occurs. For a
definition is concerned wholly with the symbols, not with what they symbolise. More-
over, it is not true or false, being the expression of a volition, not of a proposition. . .
Theoretically, it is unnecessary ever to give a definition: we might always use the
definiens instead, and thus wholly dispense with the definiendum. Thus although we
employ definitions and do not define “definition”, yet “definition” does not appear
among our primitive ideas, because the definitions are no part of our subject, but are,
strictly speaking, mere typographical conveniences44.

When I am faced with a horrified mathematician, I am willing to grant for the sake
of argument that the above quotation accurately describes ‘definitions’ in the system of
Whitehead and Russell. We ignore that system and examine a quite different one, such as
the standard system of protothetic or ontology, in which ‘creative’ definitions appear. Few
mathematicians are so preoccupied with what they want to see that they cannot admit that
the thesis in question is a definition, although it may be quite different from the ‘definitions’
in Principia Mathematica and other familiar works. After contemplating such a definition,
most mathematicians are willing to allow me to state my position as follows:

There are some definitions which are, strictly speaking, part of the system in which
they appear. They are not true or false or even meaningful relative to the portion of the
system which precedes their introduction, but once they have been introduced they are
meaningful and true45. It is often — perhaps even always — possible to use one definition
rather than another, but there are circumstances in systems of this kind in which some
definition is theoretically indispensable.

ÃLukasiewicz gives a simple example of such a system46. It is a subsystem of the
‘theory of deduction’ having propositional equivalence as its primitive term, substitution
and detachment as its only directives, and free propositional variables. The axiom is a
single thesis, EEsEppEEsEppEEpqEErqEpr in ÃLukasiewicz’s notation, or

s���p�p���s���p�p���p�q���r�q���p�r

in the notation of Whitehead and Russell. Now the only theses we can prove in the system
as described are substitutions of the axiom; we can prove that the axiom is ‘undetachable’.
But if we add to the system a definition of the traditional ‘verum’ functor, EV pEpp in ÃLuka-
siewicz’s notation, or vr(p)���p�p in Whitehead and Russell’s, we can prove all classical
equivalences in the resulting system.

1.5. Extensionality

We may say of two sentences that they are extensionally equivalent if they are both
true or both false. We may say of two name-expressions that they are extensionally equi-
valent if any object named by either expression is named by the other; in the terminology
of mediæval philosophers these names have the same extension. We may say of two expres-
sions in some semantic category other than the categories of sentences or of names that they
are extensionally equivalent if, whenever they are completed with extensionally equivalent
arguments, they form extensionally equivalent functions.

44 WHITEHEADRUSSELL10, p. 11.
45 Cf. Leśniewski’s remarks reported in KOTARBIŃSKI24, p. 264.
46 ÃLUKASIEWICZ39; MCCALL67, pp. 113–5; ÃLUKASIEWICZ70, pp. 275–7.



10 1.5. Extensionality

A deductive system can be described as extensional if, whenever two expressions are
proven to be extensionally equivalent, then they can be proven to be mutually substitutable
in all contexts. All of Leśniewski’s deductive systems are extensional. In the standard sys-
tems of protothetic, ontology, and mereology there are directives which authorise us to add
to the system a thesis guaranteeing substitutability for extensionally equivalent expressions
belonging to any semantic category except that of sentences. The law of extensionality for
sentences

[pq]�p�q���[f ]�f(p)���f(q)

can be proved without appealing to the extensionality directives47. In many of the non-
standard systems of protothetic there is no directive for extensionality, but there are direc-
tives for verification which, together with the axioms and the other directives, ensure that
theses can be proved which correspond to those which can be added to �5 in accordance
with the extensionality directive in that system.

We should note that the extensionality directives in Leśniewski’s standard systems
are closely related to the directives for definitions. Loosely speaking, we may say that if we
can prove that two terms have ‘the same’ definition, then we can always substitute one term
for the other in any context. In other words, the format of a definition gives a sufficient
condition for the extensional equivalence of two terms.

Leśniewski originally added the extensionality directive to protothetic because it was
deductively equivalent to the verification directive, but it could be formalised in a much
simpler manner48. We know, however, that he was convinced that theses of extensionality
were as true as any theses of classical logic49. It is very likely that the propositional exten-
sionality directive was added to ontology at this time, and that the nominal extensionality
directive was added to ontology soon after, when Leśniewski had reflected on it and decided
that it was valid50.

Those logicians who object to extensional logic rarely discuss the extensionality of
names; they seem to be most concerned with the so-called ‘intensional’ functors, such as
‘knows that’ or ‘believes that’, functors whose arguments they analyse as sentences. Leś-
niewski was able to analyse sentences involving such functors in an extensional manner. In
the sentence ‘A believes “p”’ the expression ‘“p”’ is a name for sentences, a name in which
there is no variable ‘p’, despite the fact that is seems to appear there. The quotes around ‘p’
are not a smuggled-in intensional functor; rather the entire expression ‘“p”’ is an informal
symbol for some name whose formal definition may not be quite the same from one context
to another.

We know of no ‘intensional’ functor which cannot be analysed as an extensional
functor in such a fashion51. Professor Lejewski has recently demonstrated that, in questions
involving extensionality and ‘singular’ names, the ‘intensional’ analysis of ‘believes’ and
related words is inconsistent with certain logical principles which hitherto have not yet been

47 LEŚNIEWSKI29, p. 30.
48 LEŚNIEWSKI29, pp. 41–4.
49 LEŚNIEWSKI29, pp. 30, 42–3.
50 This addition is mentioned in SOBOCIŃSKI34, p. 160.
51 Cf. TARSKI56, p. 8.
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called into question52. Moreover the extensional analyses seem in many ways intuitively
more satisfactory than the ‘intensional’ ones. Those of us who follow Leśniewski therefore
feel that extensionality is a valuable feature of his system, since it encourages us to avoid
incorrect semantic analysis of apparently ‘intensional’ terms. Furthermore we may expect
that few logicians will agree on the correctness of any given deductive system which appears
to contain ‘intensional’ functors, since an inadequate semantic analysis will betray itself by
making readers uneasy about some of the system’s theses.

There are, of course, many logicians and philosophers who have claimed that certain
theses of classical two-valued extensional logic make them uneasy. Leśniewski too was
suspicious of classical logic for several years, but he decided in the end that he had been
misled by the sloppily written commentaries in which many logicians surround their systems,
as if they wish to discourage readers from understanding what they have written53.

1.6. Computative protothetic

Between 1924 and 1934 Leśniewski constructed several systems of protothetic which
do not contain substitution, detachment, or extensionality among their directives. He de-
scribes these systems briefly, characterising their style of inference as ‘automatic verifica-
tion’54, a style suggested to him by the article ÃLUKASIEWICZ20. Leśniewski and his students
referred to these systems as ‘prototetyka obliczeniowa’55, which Sobociński later translated
as ‘calculation system[s] of protothetic’56, and as ‘systems of computable protothetic’57.
Leśniewski used them to prove that the ‘standard’ system of protothetic �5 is consistent
and complete58. The term ‘computative protothetic’ has been used by later writers59.

Loosely speaking, systems of computative protothetic are based on a verification di-
rective similar to Peirce’s 0–1 method but extended to every semantic category which can
be introduced into the system. Since there is no limit to the number of matrices potentially
required to verify theses, the ‘matrices’ are not given in the usual tabular form, nor do they
exist, as it were, ‘outside’ of the system. Instead the information conveyed by matrices in
other systems is expressed by various theses which actually belong to this system. Verifica-
tion and rejection can take place in a new semantic category as soon as certain necessary
theses have been proved.

The systems of computative protothetic appear to have been designed in such a man-
ner that any meaningful expression can be proved or disproved in only one way. This
means that their consistency and completeness are relatively simple to prove. Among the
disadvantages of this approach are its inflexibility and its inability to be extended.

The ‘standard’ systems of protothetic, ontology, and mereology all involve us in very
lengthy deductions if we prove theses step by step, but most complex procedures will actually

52 LEJEWSKI81, pp. 218–21.
53 Cf. LEŚNIEWSKI27, p. 170.
54 LEŚNIEWSKI38, p. 35.
55 SOBOCIŃSKI54, p. 18.
56 SOBOCIŃSKI49, p. 14.
57 SOBOCIŃSKI60, p. 54.
58 SOBOCIŃSKI54, p. 18, and SOBOCIŃSKI60, p. 56.
59 E.g., LUSCHEI62, pp. 39 and 153.
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require fewer and fewer steps as the system develops. For example, in a system of protothetic
with the directives of �5 and based on Sobociński’s axiom Ap, within a few steps of the
beginning of the system we are able to reverse any equivalence, and this will take up to 12
applications of the directives in the worst possible cases. After many deductions we can
prove a thesis which allows us to reverse any equivalence in at most three applications of
the directives. In computative protothetic there are no such short cuts.

A ‘standard’ system of protothetic can be extended to form the basis for a system of
ontology simply by allowing its directives to regard the axiom (or axioms) of ontology as
a thesis. In standard protothetic a sentence consisting of a ‘verb’ with two ‘nouns’ cannot
be substituted for a propositional variable because such an expression has no meaning in
the system. When the axiom of ontology is added, the sentence becomes meaningful and
the substitution is legitimate. But computative protothetic has no substitution directive;
it requires all complex expressions to be built up piece by piece using the definitions of all
constants contained in the expression or belonging to the semantic category of any variable
appearing in the expression. In effect this means that we could not use the ordinary axioms
of ontology. We would need to replace them with a very large number of simple axioms
containing no variables, and if we wished the theory to apply to an infinite number of objects,
as standard ontology may, we should need an infinite number of axioms. Computative
protothetic is equivalent to �5, but it cannot be used as a basis for general ontology or for
any but the very simplest of theories.

Leśniewski warns us that, although he formalised computative protothetic completely,
his published description of one system’s directives is a ‘brief, sketchy, inexact’ outline,
written ‘without observing the necessary precautions’60. In particular he points out that
he has not ‘effectively’ formulated the ‘schema’ for defining the ‘basic constants’ which are
required before applying the verification directive61. It is most unusual for Leśniewski to
present a system in this informal and incomplete fashion. It is likely that he did so mainly
because of the importance of this alternative approach, that is, because he felt that the
computative systems provide considerable insight into the nature of protothetic.

Computative protothetic is of some interest in its own right: its axiom systems are
very simple, its directives are unusual, and its deductive structure is quite easy to grasp.
The study of such systems can provide an introduction to Leśniewski’s theories and to his
metalogical methodology, and it can lead to a deeper insight into protothetic in general62.

60 LEŚNIEWSKI38, p. 36.
61 LEŚNIEWSKI38, p. 38.
62 Cf. RICKEY77, pp. 413–4.



2. The Authentic Symbolism

The ‘official’ systems of protothetic, ontology, and mereology are written using a special
symbolism devised by Leśniewski, which he calls the ‘authentic’ symbolism of his systems1.
In the present work we must use this symbolism rather than any of the more familiar
notations because it makes the task of stating directives very much easier. (In fact it
is difficult to see how the directives could be formulated at all if we used, for example,
Whitehead and Russell’s notation.) Moreover, we shall want to compare our directives with
those of �5, which are formulated with the authentic symbolism in mind, and the task of
comparing the two systems in detail becomes very burdensome if the directive formulations
lack a common basis.

Clearly the primary goal in the design of the authentic symbolism was simplifying
the directives of the standard systems of protothetic and ontology2. Leśniewski felt that
unnecessarily complex directives would form a significant barrier cutting his system off
from future readers3. But although he designed his notation to make the directives simpler
and clearer, it also proved to be able to express the theses of the system very clearly. A
number of conventions help readers to spot at a glance the groupings of parentheses and
of the indicators of quantifier scopes. The result is not as compact (or as easy to print)
as the bracket-free notation devised in 1924 by ÃLukasiewicz4, but it has the advantage of
not requiring the reader to distinguish semantic categories from each other by the alphabet
used for their variables. Leśniewski claimed that it was the clearest symbolism he knew, as
opposed to the bracket-free notation, which he said was the simplest but not the clearest
[durchsichtigste] notation he knew5.

The notations of Leśniewski and ÃLukasiewicz resemble each other in that all functors
come before their arguments; they are both what is often called ‘prefix’ notations. It was
apparently Leon Chwistek who suggested this6, presumably in 1920, when he convinced Leś-
niewski to start using ‘logical symbols’ instead of ordinary words in theses of his systems7.

1 E. g., LEŚNIEWSKI29, p. 44, and LEŚNIEWSKI38, p. 5. Leśniewski never actually published in
any of his works a thesis of mereology expressed in the authentic symbolism, but his description
of the terminological explanations associated with mereology in LEŚNIEWSKI29, pp. 68–9, makes
it clear to anyone familiar with this section of his work that the language to which they apply is
expressed in the authentic symbolism.

2 Professor Lejewski reports that Leśniewski compared the Peano-Whitehead-Russell symbol-
ism of his lectures and of many of his publications to casual dress, and compared his authentic
symbolism to formal clothing, which, he said, it was appropriate to wear on special occasions.

3 LEŚNIEWSKI29, p. 37.
4 ÃLUKASIEWICZ29, pp. 26–31 and 38–42. Cf. also ÃLUKASIEWICZ25 and Leśniewski’s remarks

reported there.
5 Cf. LEŚNIEWSKI31, p. 291, where the ‘clearest’ symbolism is obviously Leśniewski’s own.
6 LUSCHEI62, p. 107.
7 LEŚNIEWSKI31A, p. 154.
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2.1. Terminology

The sentences which constitute Leśniewski’s deductive systems are themselves made
up of basic elements called words. A word is an expression no part of which is an expression.
The following expressions are examples of words: ‘man’, ‘word’, ‘p’, ‘3’, ‘&’, ‘)’, ‘@’, ‘}’. The
following expressions are collections of words, but they are not words: ‘the man’, ‘@pT’,
‘f&Tword’. The three expressions just cited consist of two, three, and four words respectively.
The following thesis of protothetic consists of fifty-four words:&pq'(3C3@pqT&f '(3BfApf@p&u'(u)TU&r'(3Af@qrT3@qpTU)V)W)
A letter or index which is merely part of a word is not a word. An expression containing
two or more words is not a word.

An expression is a collection of successive words. Every word is an expression. The
collection of any number of consecutive words of an expression is an expression. The collec-
tion consisting of the first, third, and fourth words of some expression is not an expression
because it has a ‘hole’ in it. Every expression consists of a finite number of words. If there
were an object consisting of an infinite number of words, it would not be an expression.

When two words or expressions have the same shape, they are said to be equiform.
The fourth word of the thesis Ap cited above is equiform with the fifteenth word of the
same thesis. The expression consisting of the second and third words of Ap is equiform
with the expression consisting of the tenth and eleventh words of the same thesis. The

word ‘D’ is equiform with the word ‘@’: Leśniewski allows equiform parentheses to vary in

size, so as to improve the reader’s ability to spot the structure of an expression without
having to count the parentheses. The word ‘@’ is not equiform with either of the words ‘{’
or ‘[’: parentheses have different shapes for certain special purposes, so it is not possible to

use them as typographical variants. The word ‘
(
’ is equiform with the word ‘(’: Leśniewski

allows these words, which indicate the scope of quantifiers, to vary in height in order that
expressions may be more perspicuous. Note that none of the words ‘&’, ‘'’, ‘(’, and ‘)’, is a
parenthesis8.

The word ‘term’ is defined in the terminological explanations9, but it is also useful
in the present, informal context. A term is any word which is neither a parenthesis nor
equiform with one of the four quantifier indicators. In Leśniewski’s standard systems any
term may be used as a constant or as a variable anywhere in the system, even in two parts
of the same expression10. Two constants in different semantic categories may have the same
shape, as there is no possibility of confusing them11. A variable is simply a word bound
by a quantifier. Moreover, there is no particular shape officially associated with variables
of one or another semantic category. There are conventions that sentence variables are
taken from the series ‘p’, ‘q’, ‘r’, . . . , that name variables are taken from the series ‘A’, ‘B’,
‘C’, . . . , if they must be ‘singular’ to make some part of the containing sentence true, and

8 See LEŚNIEWSKI29, pp. 61–2, for Leśniewski’s comments on these terms.
9 LEŚNIEWSKI29, p. 63.

10 LEŚNIEWSKI29, p. 76.
11 E. g., SOBOCIŃSKI34, pp. 152 and 159.
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from the series ‘a’, ‘b’, ‘c’, . . . , if they may be ‘singular’ or ‘plural’ or ‘empty’, that variable
functors are taken from the series ‘f ’, ‘g’, ‘h’, . . . , if they have arguments in the groups just
mentioned, and from the series ‘φ’, ‘χ’, ‘ψ’, . . . , when they have arguments ‘f ’, ‘g’, ‘h’, . . . .
These conventions have no ‘official’ character; they exist only to hint to someone who reads
the thesis what it is intended to mean.

The word ‘function’ is used in a sense slightly different from that in which Frege used
it: a function consists of a term and one or more pairs of parentheses enclosing arguments.
That is, the parentheses and all of the arguments are part of the function. That part of a
function which precedes its final group of arguments and their enclosing parentheses is called
the ‘function sign’ or ‘functor’12. The ability of a function to have more than one bracketed
expression completing it is characteristic of Leśniewski’s systems. Functions of this kind
are sometimes called ‘many-link’ functions. The term which is their main functor belongs
to a semantic category whose ‘index’ is a ‘fraction’ which has another, smaller ‘fraction’ as
its numerator. Such a functor, when it is followed by appropriate arguments enclosed in
parentheses, becomes a function which is itself the functor of a larger function. Leśniew-
ski describes many-link functions as the result of generalising from certain functor-forming
functions in Principia Mathematica13.

The directives of the systems do not allow us to prove any thesis in which the ex-
pression which is under the scope of a universal quantifier is itself a generalisation14. That
is, where one might in the systems of some other logicians have expressions such as the
following &ab . . .'(&kl . . .'(f@ab . . . kl . . .T))
which in more traditional symbolism would appear as

[ab . . .]�[kl . . .]�f(ab . . . kl . . .)

in Leśniewski’s systems we are allowed to have only the corresponding expressions&ab . . . kl . . .'(f@ab . . . kl . . .T)
2.2. The syntax of Leśniewski’s systems

It is difficult to discriminate in the metatheory of Leśniewski’s systems between what
some contemporary writers would call syntax and semantics. The difficulty arises at least
in part because aspects of both sides of this distinction are found throughout the termino-
logical explanations. Because those explanations appear rather formidable, many readers
simply ignore the ‘official’ descriptions of the language of Leśniewski’s systems. I therefore
feel it may be useful to give a simple, conventional description of what others might call
the ‘syntax’ of the authentic symbolism; perhaps the simplicity of this explanation may
encourage some timid souls to wade through the more accurate account. This description
has no official character and does not resemble anything written by Leśniewski himself.

12 The term ‘functor’ was invented by Tadeusz Kotarbiński; cf. TARSKI56, p. 161.
13 LEŚNIEWSKI29, p. 66, refers to x{Cnv‘(P∩̇Q)}y from WHITEHEADRUSSELL10, p. 239.
14 LEŚNIEWSKI29, p. 77.
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The first part of the following description uses a variety of the Backus-Naur Form
(BNF) invented in 1963 for describing ‘context-free’ grammars, and now widely used in
computing circles. The expression to the left of the ‘=’ is described by the expression to
the right. Symbols in curly braces ‘{’ and ‘}’ may be omitted, or they may be repeated any
number of times. Symbols separated by ‘�’ are alternatives any one of which may be chosen.
Words in quotation marks are equiform with words in the expression being described. The
terminology is approximately that of the terminological explanations, which will be defined
precisely in a later chapter.

genl = ‘&’ trm {trm} ‘'’ ‘(’ essnt ‘)’.
essnt = trm � fnct.
fnct = trm prntm {prntm}.
prntm = left-parenthesis arg {arg} right-parenthesis.
arg = trm � fnct � genl.

The above ‘syntactic’ description of the authentic symbolism omits a very large num-
ber of restrictions imposed by the terminological explanations. I shall now summarise a few
of these restrictions.

In very loose terms, a meaningful expression is a term, function, or generalisation
which belongs to the semantic category of sentences. An expression can only be meaningful
relative to a particular stage of development of a deductive system, within which all of its
constants are primitive terms or have been defined15.

Every term in the quantifier of a generalisation must bind at least one variable in the
quantified part (essnt) of the generalisation. That is, there are no ‘vacuous’ quantifiers16.

There does not exist in the authentic symbolism a single shape of parenthesis. Instead
there are an unlimited number of possible shapes of parenthesis. These are paired into ‘left’
and ‘right’ forms which are described as symmetrical (prntsym). A pair of symmetrical
parentheses are never equiform with each other, but right parentheses are equiform with
each other if they are symmetrical to equiform left parentheses.

Like the constants in different semantic categories, equiform parentheses may have
an unlimited number of ‘semantic’ functions. Two equiform parentheses will have the same
‘semantic’ function if, and only if, they begin bracketed expressions which contain the same
number of arguments. In that case, the functions which the bracketed expressions terminate
belong to the same semantic category, and the corresponding arguments must also belong
to the same semantic categories. The directives are formulated in such a way that it is
forbidden for there to be more than one way of representing such a function; that is, if
two functions belong to the same semantic category, and if their final bracketed expressions
have the same number of arguments belonging respectively to the same semantic categories,
then the left parentheses beginning the final bracketed expressions must be equiform.

Only terms, functions, and generalisations in the authentic symbolism are defined
as belonging to a semantic category. Loosely speaking, the semantic category of an ex-
pression is determined in two ways: it is determined from ‘outside’ by being a thesis, the

15 A terminological explanation giving the precise definition of meaningful expressions in stan-
dard protothetic appears in LEŚNIEWSKI31, pp. 301–2.

16 LEŚNIEWSKI31, p. 301.
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nucleus (essnt) of a generalisation, such-and-such an argument of a bracketed expression,
or a functor followed by a particular kind of bracketed expression; it is determined from
‘inside’ by being a generalisation, or a variable bound to a related variable in an appropriate
semantic category, or an unbound term equiform with a defined constant in an appropriate
semantic category, or a function whose final bracketed expression determines by its number
of arguments and by the shape of its parentheses the category of the function. The direc-
tives ensure that the ‘inside’ and ‘outside’ determinations of the semantic category of an
expression in any thesis always agree with each other17.

2.3. The basic outlines for constants

The forms used for constants in the authentic symbolism of protothetic are purely
conventional and have no ‘official’ character. Nevertheless it is useful to know the system,
and so to be able to recognise new constants when they appear, and to see what their definer
intends them to mean.

The conventions specify ‘basic outlines’ for constants in three semantic categories18:
those with the indices ‘s’, ‘ss’, and ‘ s

s s’. The two outlines in the sentence category are ‘Λ’

and ‘V’ for ‘false’ and ‘true’ respectively. The four outlines for ‘ss’ functors are ‘,’, ‘-’,
‘.’, and ‘/’; in these the vertical bar on the left is present if, and only if, the function is
true when its argument is false; the vertical bar on the right is present if, and only if, the
function is true when its argument is true. The ‘ s

s s’ functors have sixteen basic outlines:
‘0’, ‘1’, ‘2’, ‘4’, ‘8’, ‘3’, ‘5’, ‘9’, ‘6’, ‘:’, ‘<’, ‘7’, ‘;’, ‘=’, ‘>’, and ‘?’. In these the
bottom arm occurs if, and only if, the function is true when both arguments are true; the
top arm occurs if, and only if, the function is true when both arguments are false; the left
arm occurs if, and only if, the function is true when its first argument is true and the second
is false; the right arm occurs if, and only if, the function is true when its first argument is
false and its second is true19.

Thus the following table lists some of the more common correspondences between
expressions that might be found in Principia Mathematica or in works which more or
less follow the same conventions, and those that might appear in Leśniewski’s authentic
symbolism:

Principia Leśniewski Principia Leśniewski�p .@pT p�∣∣�q >@pqT
p��q 7@pqT p�y�q 2@pqT
p���q =@pqT (p)�f(p) &p'(f@pT)
p�q 1@pqT (p)�(q)�f(p, q) &pq'(f@pqT)

p���q 3@pqT (
p)�f(p) .B&p'(.Af@pTU)V
In addition to the basic outlines, constants may have an index. For example, the

three constants ‘.’, ‘.
1
’, and ‘.

2
’ are not equiform, but have the same ‘truth conditions’.

17 LEŚNIEWSKI31, pp. 301–2.
18 See LEŚNIEWSKI38. pp. 21–3.
19 Note that the account of these symbols in QUINE40 is incorrect.
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In standard systems of protothetic such synonymous constants are introduced by different
definitions and usually have only temporary interest.

The authentic symbolism is described accurately and officially in the terminological
explanations of protothetic and of ontology. Sensitive use of this symbolism requires us
to conform to a large number of conventions and redundant features, but most of these
contribute significantly to the perspicuity of the expressions constructed in the symbolism.



3. The History of Protothetic

An outline of the history of protothetic provides one perspective on the theory. This helps
to explain how it extends the traditional ‘theory of deduction’ and why these extensions
were added.

3.1. The foundations of mathematics

In 1911 Leśniewski learned of the existence of symbolic logic and of Russell’s antinomy
concerning the ‘class of the classes which are not elements of themselves’1. He was distressed
by this antinomy, and he believed that all attempts of mathematicians to solve it had strayed
rather far from the intuitive basis of the problem:

The only method of effectively ‘solving’ the ‘antinomies’ is the method of an intuitive
undermining of the inferences or presuppositions which together contribute to the
contradiction. A mathematics separated from intuition contains no effective medicines
for the infirmities of intuition2.

Leśniewski’s first step was to become familiar with symbolic logic. He says that
he spent four years3 gradually overcoming his initial aversion to this discipline, which he
attributed to the ‘hazy, ambiguous commentaries which workers in this field have provided
for it’4. After studying the systems of others, he began to produce his own deductive
theories in the reverse order of their logical dependence, publishing in 1916 his first work
on mereology5, constructing in 1920 the first axiom for ontology6, and the first system of
protothetic two years later7.

In the period between 1916 and 1922 the style of Leśniewski’s work changed markedly.
In 1916 he wrote proofs in ordinary language, supplemented by variables and a few technical
terms; his style was formal but not formalised, and his ‘natural deduction’ had rather a
Euclidean flavour. By 1922 he was writing proofs entirely in logical symbols, and though
he used natural deduction for some of them, others were constructed using substitution and
detachment. These systems were highly formalised, with dozens of technical terms defined
by terminological explanations written in ordinary language with the help of variables and
technical terms. Leśniewski did not believe that his formalism made his systems more
remote from his ‘logical intuitions’. He saw ‘no contradiction in wishing to maintain that I
practise an apparently radical formalism’ despite being ‘an obdurate intuitionist’8. In his
deductive system he ‘entertained a series of thoughts expressed in a series of sentences’,
deriving one from another by inferences which he considered ‘binding’; he knew no method
better than formalising them for acquainting a reader with his ‘logical intuitions’9.

1 LEŚNIEWSKI27, p. 169.
2 LEŚNIEWSKI27, p. 167.
3 LEŚNIEWSKI27, p. 181.
4 LEŚNIEWSKI27, p. 170.
5 LEŚNIEWSKI16.
6 LEŚNIEWSKI30, p. 114.
7 LEŚNIEWSKI29, pp. 36–7.
8 LEŚNIEWSKI29, p. 78.
9 Ibid.

19
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After he had created protothetic in 1922, Leśniewski’s system of foundations for math-
ematics was essentially complete. He insisted that it was only one of the many possible
foundations of mathematics, and he cautiously admitted that he was satisfied with it ‘for
the time being’ [narazie]10. He spent the remaining seventeen years of his life studying and
attempting to improve his three deductive theories, concentrating for much of that time on
simplifying the axiom systems and the directives.

3.2. General characteristics

Leśniewski’s critical study of earlier deductive systems led him to a number of con-
clusions which shaped protothetic significantly.

It was not clear to him what signs of assertion (and signs of rejection) mean, and
whether or not they are actually part of the theses of deductive systems11, so that before
1918 he decided simply to ignore them12. Consequently protothetic and Leśniewski’s other
theories have no such symbols.

By 1920 he concluded that there was no need for ‘real’ variables13; hence in protothetic
all variables must be bound explicitly by universal quantifiers. Leśniewski did not introduce
particular quantifiers into his ‘official’ systems. He reasoned that there are not just two sorts
of quantifier, particular and universal, but an unlimited number; for example, there are the
quantifiers ‘for at least two’, ‘for at most five’, and ‘for between three and six’14. He
could see no way to introduce all possible quantifiers into his systems with appropriate
formalisation, and decided in the end that it was inappropriate to introduce more than one
sort of quantifier without introducing all of them15.

Sheffer in 1912 showed that the ‘theory of deduction’ could be based on a single
primitive term instead of two, such as Frege (implication and negation) and Whitehead
and Russell (alternation and negation) had used16. In 1916 Nicod constructed an axiom
system for one of Sheffer’s terms17. Both Sheffer and Nicod make use of a special symbol
for definitional equivalence and special rules of replacement for defined terms. Leśniewski
believed that definitions are in fact part of deductive systems, and must be expressed using
the primitive term or terms of the system. Therefore in 1921 he remarked that it was
difficult to accept that the systems of Sheffer and of Nicod are based on a single primitive
term. This could be remedied if the equivalences were expressed using the primitive term

10 LEŚNIEWSKI27, p. 168.
11 LEŚNIEWSKI27, pp. 170–5.
12 LEŚNIEWSKI27, p. 181.
13 ÃLUKASIEWICZ20, p. 189; LEŚNIEWSKI29, p. 31.
14 Leśniewski never discussed such quantifiers in print, but he apparently believed that they

resemble the numbers of ordinary language more closely than do the numerical functors which can
be defined in ontology. Professor Lejewski learned of this from BolesÃlaw Sobociński, Leśniewski’s
student and closest collaborator.

15 LEJEWSKI56, p. 191.
16 Cf. SHEFFER13. In 1880 C. S. Peirce had actually discovered that one of Sheffer’s functors

had this property, but this was not known until recently.
17 NICOD20.
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of the appropriate system18. For example, as he suggested in 1933, since it is easy to prove
that

[pq]�p�q���p∣∣q�∣∣�p∣∣p�∣∣�q∣∣q
expressions of the type ‘p

∣∣q�∣∣�p∣∣p�∣∣�q∣∣q’ should be used for expressing definitions in the
system of Nicod19.

Definitions expressed in such a fashion are obviously not as simple or as intuitive as
definitions expressed as equivalences, so that a system based on equivalence as a primitive
term would be more attractive than a system based on the ‘stroke’ functor20. Such a system
would not be very satisfactory, however, if it was not strong enough to allow all possible
functors to be defined. In 1922 Alfred Tarski, who was then completing his doctorate
under Leśniewski’s supervision, discovered that conjunction could be defined in terms of
equivalence21. At the time Tarski found two possible definitions:

[pq]�p�q���[f ]�p���[r]�p�f@rT���[r]�q�f@rT
[pq]�p�q���[f ]�p���f@pT�f@qT

According to Tarski the first definition is true in all systems, while the second is true in
those systems in which the law of extensionality for expressions in the semantic category of
sentences can be proved:

[fpq]�p�q�f@pT��f@qT
Since, for example, the thesis [p]��p���p���[u]�u can easily serve as the definition of
negation, a system based on equivalence as its only primitive term can be functionally
complete.

Leśniewski decided that deductive systems which are based on a single primitive
term are superior to systems based on more than one primitive term; such systems are
not logically better but they are æsthetically more satisfying22. The standard systems of
protothetic, ontology, and mereology are each based on a single primitive term. Systems
of computative protothetic, for reasons which will be explained later, must be based on at
least two primitive terms.

In 1922, the year in which Tarski discovered how to define conjunction in terms of
equivalence, Leśniewski outlined his notion of semantic categories23. With this it became
possible to construct an elegant replacement for the ‘theory of deduction’ which would
satisfy Leśniewski in all respects.

18 LEŚNIEWSKI29, pp. 9–11.
19 LEŚNIEWSKI38, pp. 16–17.
20 Leśniewski later observed that there is another primitive term which is nearly as elegant as

‘3’, namely ‘<’, the functor of inequivalence. I learned of this unpublished remark from Professor
Lejewski.

21 LEŚNIEWSKI29, pp. 11–13; TARSKI56, pp. 2, 7–8.
22 SOBOCIŃSKI56, p. 55.
23 LEŚNIEWSKI29, p. 14.
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3.3. The theory of pure equivalence

In 1922 Leśniewski began to create protothetic by constructing a deductive system
in which he could prove any of the ‘pure equivalences’ which can be proved in the ordinary
‘theory of deduction’. This first subsystem of protothetic has directives only for substitution
and detachment and is based on the following two axioms24:

A1 p�r���q�p���r�q (EEEprEqpErq )
A2 p���q�r���p�q���r (EEpEqrEEpqr)

Leśniewski referred to this subsystem of protothetic as system �25. The thesis A2 is the
law of associativity for equivalence, which had been proved before 1922 by ÃLukasiewicz26.

In 1929 Leśniewski published a proof of the completeness of system �27. In that
proof he establishes the consistency of � relative to the consistency of the classical ‘theory
of deduction’, but he also establishes that theses can be added to � if, and only if, the
number of equiform variables of each shape is even28. ÃLukasiewicz later observed that this
gives us a simple structural proof of the consistency of �29.

The later development of system � is of some interest in its own right and has
influenced the later development of protothetic. Between 1925 and 1930 Mordchaj Wajsberg
discovered several axiom systems for �, including the first two single axioms30:

W1a p���q�r���p�q���r (EEpEqrEEpqr)
W1b p�q���q�p (EEpqEqp)

W2a p���q�r���r���q�p (EEpEqrErEqp)
W2b p�p���p��p (EEEpppp)

W3 p�q���r���s���s���p���q�r (EEEEpqrsEsEpEqr)

W4 p���q�r���r�s���s���p�q (EEEpEqrEErssEpq )

In 1926, searching for an axiom which resembled the law of extensionality for sen-
tences, but which would be adequate for system� as well, Wajsberg discovered the following
axiom; it is not a thesis of system �, but given certain additional directives, all theses of
system � can be proved from it31:

W5 p�q���[g]�g(r�s���t, q)���g(s�t���r, p)
(EEpqΠδEδEErstqδEEstrp)

Once the first single axiom for � had been discovered, several researchers began to
search for others. Between 1927 and 1932 six more single axioms were discovered, all the
same length as W3 and W4. Of these W7 was discovered by Jerachmiel Bryman, W6 and
W8 by ÃLukasiewicz, and W9, W10, and W11 by BolesÃlaw Sobociński32:

24 LEŚNIEWSKI29, pp. 15–16.
25 LEŚNIEWSKI29, pp. 15–16.
26 LEŚNIEWSKI29, p. 16; TARSKI56, p. 4.
27 LEŚNIEWSKI29, pp. 16–30.
28 LEŚNIEWSKI29, pp. 26 and 29.
29 ÃLUKASIEWICZ39; MCCALL67, pp. 107–8; ÃLUKASIEWICZ70, pp. 269–70.
30 WAJSBERG37; MCCALL67, pp. 314–6.
31 LEŚNIEWSKI38, p. 29.
32 SOBOCIŃSKI32, pp. 186–7.
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W6 s���p���q�r���p�q���r�s (EEsEpEqrEEpqErs)

W7 p���q�r���q���s�r���s�p (EEpEqrEEqEsrEsp)

W8 p���q�r���q���r�s���s�p (EEpEqrEEqErsEsp)

W9 p���q�r���p���r�s���s�q (EEpEqrEEpErsEsq )

W10 p���q�r���p���s�r���s�q (EEpEqrEEpEsrEsq )

W11 p���q�r���p���r�s���q�s (EEpEqrEEpErsEqs)

In 1933 ÃLukasiewicz discovered three single axioms shorter than any others known at
that time33:

W12 p�q���r�q���p�r (EEpqEErqEpr)

W13 p�q���p�r���r�q (EEpqEEprErq )

W14 p�q���r�p���q�r (EEpqEErpEqr)

At the same time he discovered that no single axiom for � is shorter than any of these34.
ÃLukasiewicz was mistakenly believed to have shown that there were no other axioms of this
length for �35, but C. A. Meredith found two others in 1951:

W15 p�q���r���q���r�p (EEEpqrEqErp)

W16 p���q���p�r���r�q (EpEEqEprErq )

Meredith later discovered six further axioms of the same length36:

W17 p���q���r�p���r�q (EpEEqErpErq )

W18 p���q�r���r���p�q (EEpEqrErEpq )

W19 p�q���r���q�r���p (EEpqErEEqrp)

W20 p�q���r���r�q���p (EEpqErEErqp)

W21 p���q�r���r���q�p (EEEpEqrrEqp)

W22 p���q�r���q���r�p (EEEpEqrqErp)

At least three completeness proofs have been published for system �: by Leśniew-
ski37, Mihailescu38, and ÃLukasiewicz39.

33 ÃLUKASIEWICZ39; MCCALL67, pp. 93 and 96–9; ÃLUKASIEWICZ70, 255 and 258–61.
34 ÃLUKASIEWICZ39; MCCALL67, pp. 108–12; ÃLUKASIEWICZ70, pp. 270–5.
35 SOBOCIŃSKI49, p. 10.
36 MEREDITH63, p. 185; see also PETERSON76 and KALMAN78.
37 LEŚNIEWSKI29, pp. 16–30.
38 MIHAILESCU37.
39 ÃLUKASIEWICZ39; MCCALL67, pp. 99–104; ÃLUKASIEWICZ70, pp. 261–6.
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3.4. Equivalences plus bivalence

Leśniewski next considered what axioms and directives he needed to add to system� to obtain the complete ‘propositional calculus’, including all terms that are ordinarily
defined in it, together with the law of extensionality for sentences40:

[fpq]�p�q��f@pT���f@qT
He promised to discuss this thesis at length in a later instalment of ‘Grundzüge’, paying
particular attention to the doubts which others might have about it, but he never kept this
promise. Instead we have only the bare statement that

I intended to construct a system in which, among others, just such a thesis would be
provable, because from 1922 to the present this thesis has had for me just as much
value as any thesis whatever of the ordinary ‘propositional calculus’41.

The system which he constructed at this time, system �1, differs from system � in
two important respects:

(1) It contains no free variables.

(2) It allows variables to be introduced in the semantic category of any constant that can
be defined in the system.

Leśniewski’s investigations of possible axioms showed that the law of extensionality
in its purely equivalential form

[pq]�p�q���[f ]�f@pT���f@qU
is too weak to serve as the only axiom to be added to those of system �, since we cannot
prove on such a basis, for example, the law of bivalence in the form

[gp]�g@pT�g@�pT���[q]�g@qT
while given some thesis guaranteeing bivalence we can prove the law of extensionality for
sentences42. He therefore chose the following axiom system for system �1:

Ax. I [pqr]�p�r���q�p���r�q

Ax. II [pqr]�p���q�r���p�q���r
Ax. III [gp]�[f ]�g(p, p)���[r]�f(r, r)���g(p, p)���[r]�f(r, r)���g(p���[q]�q, p)���

[q]�g(q, p)
The first two axioms correspond to the axioms of system �, while Ax. III is a version

of the law of bivalence, stated using equivalence to express conjunction in manner similar to
Tarski’s first, longer definition. At this time Leśniewski knew that Ax. III was equivalent
in the context of system �1 to the shorter thesis

[gp]�[f ]�g@pT���[r]�f@rT���g@pT���[r]�f@rT���g@p���[q]�qT���[q]�g@qT
but he preferred the longer thesis as an axiom because the terms in it belong to just two
semantic categories, those with indices ‘s’ and ‘ s

s s’, while the shorter thesis also contains

40 LEŚNIEWSKI29, p. 30.
41 Ibid.
42 LEŚNIEWSKI29, p. 43.
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terms belonging to the category with the index ‘ss’. He compared this restriction to the
exercise of reducing the number of primitive terms in an axiom system43.

In the authentic symbolism of protothetic, the three axioms given above correspond
to the following three theses:

A1 &pqr'(3B3A3@prT3@qpTU3@rqTV)
A2 &pqr'(3B3Ap3@qrTU3A3@pqTrUV)
A3 &gp'(3E&f '(3Dg@ppT3C&r'(3Af@rrTg@ppTU)&r'(3Bf@rrTgA3@p&q'(q)TpUV)WX)&q'(g@qpT)Y)

These same axioms serve as the basis not only of �1 but also of �2, �3, and �5.

The directives of system �1 can be described as follows:

(α) The directive for detachment of equivalences. Roughly speaking, this allows us to
infer from expressions of types ‘3@αβT’ and ‘α’ the corresponding expression of type
‘β’. The directive does not permit detachment ‘under’ a quantifier; that is, from

‘&pq'(3B3@ppT3A3@pqT3@qpTUV)’ and ‘&p'(3@ppT)’ we cannot directly infer ‘&pq'(3A3@pqT3@
qpTU)’44.

(β) The directive for substitution. This permits us to substitute expressions for the
variables bound by the main quantifier of a thesis. For a given variable we may
substitute a variable, a constant, a function, or a generalisation, provided that the
result does not violate the mechanism for preserving semantic categories or break
some other restriction. ‘Fregean’ substitution of some expression for an entire function
‘f(xy)’ is not permitted45.

(γ) The directive for distributing universal quantifiers over an equivalence. This directive
is described at greater length below.

(δ) The directive for writing definitions having the form of an equivalence which may, if
necessary, stand ‘under’ a universal quantifier binding its variables. The definiendum
appears as the first argument of the equivalence, and the definiens appears as the
second argument. The restrictions placed on definitions make the terminological
explanation for this directive the most complex of all those published for systems of
protothetic46.

(ζ) A further directive concerning quantifiers. We know very little about this directive.
Leśniewski intended that it should allow us to prove after a certain point in the
development of �1 the equivalence of an expression of the type ‘p��[xy]�f(xy)’
with the related expression of the type [xy]�p��f(xy), where ‘x’ and ‘y’ may be

43 LEŚNIEWSKI29, pp. 32–3. In his remarks Leśniewski did not use Ajdukiewicz’s index notation,
which had not yet been invented when LEŚNIEWSKI29 was published.

44 LEŚNIEWSKI29, p. 34.
45 LEŚNIEWSKI29, p. 77. Cf. FREGE93, p. 63.
46 In LEŚNIEWSKI29, pp. 34–5, this directive is described under two headings, δ and ε. I follow

SOBOCIŃSKI60 in using δ and ε respectively for the definition and extensionality directives.
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one or more variables belonging to any arbitrary semantic categories, ‘f(xy)’ is an
expression in which those variables are free, and ‘p’ is an expression in which none
of those variables are free47. We know that in its formulation the directive was not
allowed to refer to defined terms such as the implication sign, and that in consequence
the explanation of this directive was extremely complex48.

The directive γ for the distribution of quantifiers, when applied to the axiom A1,
allows us to add any of the following expressions to the system as a new thesis:3B&pqr'(3A3@prT3@qpTU)&qr'(3@rqT)V&r'(3B&pq'(3A3@prT3@qpTU)&q'(3@rqT)V)&qpr'(3B3A3@prT3@qpTU3@rqTV)&pqr'(3B3A3@prT3@qpTU3@rqTV)
Note that (1) some, all, or none of the terms may be distributed; (2) the directive does not
specify what order the terms shall have in the main quantifier or in the quantifiers of the
two arguments of the equivalence; (3) a term cannot move from the main quantifier into an
argument’s quantifier unless it binds some variable in that argument; (4) a term distributed
to one argument may not remain in the main quantifier; (5) the main quantifier must be
distributed completely before detachment can take place.

3.5. The first complete system of protothetic

There are a number of meaningful expressions which cannot be proved or disproved on
the basis of the axioms and directives of system �1. Leśniewski was particularly concerned
about two kinds of expression49:

(a) Expressions which determine the extensionality of all expressions in the semantic
category of a particular functor, such as

[fg]�[pq]�f(p, q)���g(p, q)���[φ]�φ<
1
f>

1
���φ<

1
g>

1

(b) Expressions which Tarski described as ‘theorems on the bounds of a function’50, one
of which is, for example,

[φ]�φ<vr>�φ<as>�φ<�>�φ<fl>���[f ]�φ<f>
in which the constants ‘vr’, ‘as’, ‘�’, and ‘fl’ correspond respectively to the basic
constants ‘/’, ‘-’, ‘.’, and ‘,’.

Leśniewski could easily prove expressions of type a if he had available the appropriate
expressions of type b, but he suspected that, by analogy with the case of propositional
extensionality and bivalence, the converse was not the case; that is, he did not believe that

47 Cf. LEŚNIEWSKI29, p. 38.
48 Ibid.
49 LEŚNIEWSKI29, pp. 42–3.
50 E. g., TARSKI56, p. 21.
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he could prove an expression of type b even if he had available any number of expressions
of type a51. He therefore considered solving the problem of the undecidability of certain
expressions in �1 by adding expressions of type b to the system. Since there is no limit to
the number of such expressions, and since they appear to be independent of each other, it
is not possible to make system �1 complete by adding a finite number of axioms equivalent
to expressions of type b. But Leśniewski wanted a complete system, and one in which, if
possible, all of the above expressions are provable.

A solution was suggested by a rule which ÃLukasiewicz had published two years previ-
ously:

I assert each expression containing variables in universal quantifiers from which,
through setting the values 0 and 1 in place of the variables, there arise nothing but
asserted expressions52.

After reflecting on this rule, Leśniewski added a new directive to the system:

In the year 1922 I made the system �1 complete by means of a new directive η, which
is modelled after the pattern of the above cited directive d of ÃLukasiewicz, and which
in general concerns all variables appearing in the system �1 which are not sentence
variables. The directive η permitted me to add to the system a new thesis T beginning
with a universal quantifier, if there already belonged to the system the theses which
you could get from thesis T if you substituted in it for the variables mentioned certain
constant function signs whose method of definition is determined in advance with
complete precision for all ‘semantic categories’53.

Speaking very informally, Leśniewski said of the resulting system �2 that

System �2 is an absolutely ‘finite’ system, since it permits us to establish for the
variables of each ‘semantic category’ appearing in the system a precisely determined
finite number of different possible values: two values for sentence variables (the ‘zero’
and ‘one’ of the traditional ‘propositional calculus’), four values for variable function
signs of sentence-forming functors with one sentence argument, sixteen values for
variable function signs of sentence-forming functions which belong to the ‘semantic
category’ to which the function signs of sentence-forming functions of one sentence
argument belong, and so on. These possible values of the variables of every given
‘semantic category’ correspond to the above mentioned constant function signs to
which the directive η refers54.

After mentioning that the terminological explanations required for formalising this
directive were extremely complicated, Leśniewski promised to explain it in greater detail in
a future instalment of Grundzüge which was never in fact published55. The question is of
considerable interest from several points of view. A number of techniques which are used
in deductions in the system �5 are not valid when the definition directive is restricted as
above, to limit the number of values in each category. It would be a simple matter to develop
alternative techniques if the directive η applied to sentence variables, but this is explicitly
denied in the first passage quoted. The directive is of considerable interest to students of

51 LEŚNIEWSKI29, p. 43.
52 ÃLUKASIEWICZ20, p. 197.
53 LEŚNIEWSKI29, p. 36.
54 LEŚNIEWSKI29, p. 37.
55 Ibid.
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computative protothetic, since it is the direct ancestor of the directives h in those systems.
How can a definition directive be formulated in such a manner that the definitions of all
constants are specified in advance with complete precision [vollständig genau im voraus
bestimmt ]56?

3.6. The second complete system of protothetic

Leśniewski clearly saw two of the directives of�2 as blots on his system: the quantifier
directive ζ and the verification directive η. With the help of his doctoral student Alfred
Tarski he spent a good deal of time revising and simplifying them. In both cases Tarski
contributed significantly to the ultimate resolution of the difficulty.

In 1922 Tarski showed that, without appealing to the directive ζ, we can prove in
systems �1 and �2 all theses of the types

[f ]�0��[xy]�f(x, y)���[xy]�0��f(x, y)
[f ]�1��[xy]�f(x, y)���[xy]�1��f(x, y)

From these two theses we can use the verification procedure for sentence variables to obtain

[fp]�p��[xy]�f(x, y)���[xy]�p��f(x, y)

This means that in systems �1 and �2 the directive ζ is superfluous and can be dropped57.

In the same year Tarski sketched a general method of proving any ‘theorem on the
bounds of a function’ from the corresponding ‘extensionality thesis’, provided a similar
‘theorem on the bounds’ has already been proved for expressions in the same semantic
category as each argument of the function in question. This discovery made it possible
to replace directive η by a new and much simpler directive, which we shall call ε. This
directive permits us to add to the system an extensionality thesis for functors in any semantic
category. System �3 is what Leśniewski called a system of protothetic based on axioms
A1, A2, and A3 and on directives α, β, γ, δ, and ε58. In this system Leśniewski returned
to the more liberal definition directive which allows us to define any number of constants
in any semantic category.

In the following year Tarski was studying the problem of reducing the number of
axioms in various deductive systems. In the course of his research he determined that,

given a thesis which states that &pq'(3A3@pqT3@qpTU), we can use the directives of �3 to

derive from some thesis of the type &fp'(3Bf@PpT3Af@QpTP UV), which is a kind of ‘logical

product’, the corresponding expressions P and Q. We do this by defining a function ‘?’ for
which we can prove that &pq'(?@pqT), then detaching this twice from the ‘logical product’.
From this he inferred that system �3 can be based on two axioms, one of which is a

thesis equivalent to &pq'(3A3@pqT3@qpTU), and the other of which is a ‘logical product’ of any

arbitrary number of theses59.

56 LEŚNIEWSKI29, p. 36.
57 LEŚNIEWSKI29, pp. 38–41.
58 LEŚNIEWSKI29, p. 44, where the extensionality directive is called ‘η∗’. I use ‘ε’ following

SOBOCIŃSKI60, p. 57.
59 LEŚNIEWSKI29, pp. 50–4.
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3.7. The ‘official’ system of protothetic

In 1923 Leśniewski observed that if he modified the definition directive δ to require
that the new term should appear in the second argument of the equivalence while the
definiens is the first argument, then from a ‘logical product’ of the type just mentioned we

can infer P without appealing to a thesis of the type &pq'(3A3@pqT3@qpTU)60. Moreover, if
P is in fact a thesis of this type, we can infer the other conjuncts of the ‘logical product’,
and we could have a system of protothetic which is based on a single axiom. The ‘official’
system of protothetic �5 is based on the axioms A1, A2, and A3 and the directives α, β, γ,
δ with the definiendum on the right, and ε. Leśniewski published more than eighty pages of
deductions in system �5, including proofs of theses corresponding to ÃLukasiewicz’s axiom
system for the ‘propositional calculus’ based on implication and negation61 and a form of
the law of extensionality for sentences62:

T422 &pqs'(7B7@sqT7A7@qpT7@spTUV)
T400 &pq'(7Bp7A.@pTqUV)
T398 &p'(7B7A.@pTpUpV)
T381 &gpq'(7B3@pqT3Ag@pTg@qTUV)

The first single axiom of a system equivalent to �5 was 290 words long63:

Aa &fp'(3NfB&pq'(3A3@pqT3@qpTU)pV3MfL&hs'(3KhC&pqr'(3B3A3@prT3@qpTU3@rqTV)sW3J
hI&kt'(3HkC&pqr'(3B3Ap3@qrTU3A3@pqTrUV)tW3GkF&gp'(3E&f '(3Dg@ppT3C&r'(3Af@rrTg@ppTU)&r'(3Bf@rrTgA3@p&q'(q)TpUV)WX)&q'(g@qpT)Y)tZ&pqr'(3B3Ap3@qrTU3A3@pqTrUV)[\)
s]&pqr'(3B3A3@prT3@qpTU3@rqTV)^_)p`&pq'(3A3@pqT3@qpTU)ab)

60 LEŚNIEWSKI29, pp. 54–5.
61 ÃLUKASIEWICZ29, pp. 45 and 66–98.
62 LEŚNIEWSKI39, pp. 137, 139, 143–4.
63 LEŚNIEWSKI38, pp. 24–5. Cf. SOBOCIŃSKI60, p. 64.
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Several shorter axioms found in 1923 are not significantly different from Aa, since they
merely involve slight changes in the various conjuncts forming the basis of system �; in all
of them one conjunct is essentially identical with axiom A3. The last single axiom of this
general type was discovered by Leśniewski in 1926; it is 124 words long and is essentially
the ‘logical product’ of Leśniewski’s axiom A3 and Wajsberg’s axiom W464:

Ad &fhpqrx'(3FfE&k'(3D&s'(3Ak@ssTh@ppTU)3Ch@ppT&s'(3Bk@ssThA3@p&t'(t)TpUV)WX)qY3D
fA&t'(h@tpT)qU3C3B3Ap3@qrTU3A3@rxTxUV3@pqTWXZ)

In 1926 Leśniewski suggested to Wajsberg that this axiom might be shortened if
instead of W4 it contained some thesis from which we could prove not only the theses of
system � but also a thesis of extensionality, since this would allow the form of the ‘logical
product’ in the axiom to be simplified. Shortly afterwards Wajsberg discovered that all
theses of system � can be proved from the axiom W5, which, though it is not strictly
speaking an extensionality thesis, nevertheless allows us to simplify the form of the ‘logical
product’ in an axiom:

W5 &pqrst'(3D3@pqT&g'(3CgB3A3@rsTtUqVgB3A3@stTrUpVW)X)
Note that after defining &p'(3Ap-@pTU) we can obtain in two detachments from W5 the

thesis65 &rst'(3B3A3@stTrU3A3@rsTtUV)
Both this type of detachment and various relatives of the law of extensionality have played
an important rôle in almost all subsequent single axioms. Making use of these discoveries
Wajsberg constructed in 1926 an axiom 120 words long66:

Ae &fhpqrst'(3FfE&g'(3Dh@ppT3CgAqh@ppTUgBqhA3@p&t'(t)TpUVWX)rY3EfA&t'(h@tpT)rU3D3@pqT&g'(3CgB3A3@rsTtUqVgB3A3@stTrUpVW)XYZ)
In the same year 1926 Leśniewski discovered the axiom Af , which is 116 words long.

It is essentially a ‘logical product’ of a simplification of A3 with Wajsberg’s axiom W3 67:

64 LEŚNIEWSKI38, p. 27.
65 LEŚNIEWSKI38, p. 32.
66 LEŚNIEWSKI38, p. 29.
67 LEŚNIEWSKI38, p. 30.
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Af &fhpqrs'(3GfA&t'(h@tpT)qU3FfE&k'(3Dh@ppT3C&s'(k@ssT)&s'(3Bk@ssThA3@p&t'(t)TpUV)WX)qY3C3B3A3@pqTrUsV3Bs3Ap3@qrTUVWZ[)
Later in 1926 Wajsberg discovered the axiom Ag, which is 106 words long. This

axiom, which is based on the axioms W2a and W2b, makes use of a number of interesting
ad hoc devices, though the initial deductions from it are not as obvious as those starting
with earlier axioms68:

Ag &fp'(3G&s'(f@spT)&g'(3Ff@ppT3E&t'(g@ttT)&qrt'(3DgB3A3@ttTtUtV3CfA3@p&s'(s)TpU3B3A
p3@qrTU3Ar3@qpTUVWX)YZ)[)

Leśniewski was able to produce a much shorter axiom by departing completely from
the style of axiom which resembles A3. All known single axioms which are shorter than Ag

are based in some respect on the following thesis discovered in about 1922 by Tarski69:&f '(3BfAf@&u'(u)TU&p'(f@pT)V)
This thesis, together with the law of extensionality, permits us to dispense with the ‘logical
product’ stating, in effect, that&fp'(3C1Bf@pTfA3@p&u'(u)TUV&q'(f@qT)W)
Leśniewski discovered that he could replace such a thesis with one more or less like the
following thesis, which incorporates characteristics both of the law of extensionality and of
the thesis discovered by Tarski:

A3a &pq'(3C3@pqT&f '(3BfApf@p&u'(u)TU&r'(f@qrT)V)W)
If we have obtained two theses of the type ‘f@&u'(u)T’ and ‘f(1)’, where ‘f ’ is any

expression whatever containing the ‘argument’ or ‘arguments’, and ‘1’ is any expression
which has been proved in the system, thesis A3a allows us to prove, with the help of certain
theses of system �, the corresponding thesis of the type ‘&r'(f@rT) ’. Thus A3a effectively
replaces the thesis A3. This procedure (or any procedure which has an equivalent effect) is
so important in most deductions in system �5 that it is useful to have a name for it: we
shall call it M5 70. This derived ‘metarule’ can be established using A3a if we introduce a
functor ‘φ’ corresponding to the expression ‘f ’ with the definition

68 LEŚNIEWSKI38, p. 30.
69 Cf. TARSKI56, p. 17.
70 Cf. SOBOCIŃSKI61, pp. 119–20, where the metarule is called S5.
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System � allows us to prove on this basis that &p'(3A1φ@p&u'(u)TU) and that &p'(φ@p1T). The

‘extensional’ ability of A3a allows us to prove from these expressions that &p'(φApφ@p&u'(u)TU). We can then use the part of A3a which corresponds to Tarski’s thesis to prove that&pr'(φ@prT). From this and the above definition of ‘φ’ we can prove, with the help of system�, that &r'(f@rT).
By relying on deductions like these, Leśniewski constructed in 1926 a single axiom of proto-
thetic only 82 words in length71:

Ah &fpqrst'(3F3@pqT&g'(3EfApf@p&u'(u)TU3D&u'(f@quT)3CgB3A3@rsTtUqVgB3A3@stTrUpVWXY)Z)
Thesis Ah is an organic72 amalgamation of thesis A3a and Wajsberg’s thesis W5. It does
not seem to have been observed that we can distribute all terms from the main quantifier
except p and q and obtain an axiom equivalent to Ah but more ‘canonical’73. Moreover
this thesis has the defect that it effectively duplicates the expression of ‘extensionality’,
since both functor variables ‘f ’ and ‘g’ are used for this purpose. Leśniewski would have
preferred an axiom from which it is easier to derive one of the ordinary axiom systems for�74. He discovered such a thesis in 1933 when he learned of ÃLukasiewicz’s discovery of the
single axioms W12, W13, and W14 ; like Ah it is 82 words long75:

Ai &fpqrst'(3F3@pqT&g'(3EfApf@p&u'(u)TU3D&u'(f@quT)3CgB3A3@rtT3@srTUqVgA3@stTpUWXY)Z)
We use Leśniewski and Tarski’s procedure described in section 3.6 to define a functor

which is true for all arguments, and with this and Wajsberg’s procedure (as used in the
initial deductions from W5 ), we detach from Ai the thesis&rst'(3B3@stT3A3@rtT3@srTUV)

71 LEŚNIEWSKI29, p. 59; LEŚNIEWSKI38, pp. 30–1
72 The term ‘organic’ refers to a thesis no part of which is a thesis or becomes a thesis when

bound by an appropriate quantifier. Leśniewski introduced the concept of organic theses, and
Mordchaj Wajsberg gave the first formal definition of the concept. See SOBOCIŃSKI56, p. 60, and
ÃLUKASIEWICZTARSKI30, p. 37.

73 See SOBOCIŃSKI56, p. 62, for a definition and discussion of this term.
74 LEŚNIEWSKI38, p. 31.
75 LEŚNIEWSKI38, p. 32.
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which corresponds to ÃLukasiewicz’s axiom W12 for system �. Leśniewski outlines at length
the remaining deductions from Ai, establishing on that basis the metarule we have called M5
and sketching the proof of theses expressing the ‘laws of conjunction’76. At the end of his
outline, he says that, in the light of his remarks ‘we can “see” that axiom Ai is sufficient for
constructing’ a system of protothetic77. Sobociński later revealed that Leśniewski’s remark
refers to the following important metatheorem proved by Leśniewski, which we shall call
L1 78:

L1 An axiom system is adequate as a basis for a complete system of protothetic having
the directives of �5 if from the system we can prove

(1) One or more theses adequate for proving all theses of system �.

(2) The metarule M5.

(3) The four laws of conjunction:

K1 3A&u'(u)1@&u'(u)&u'(u)TU
K2 3B&u'(u)1A&u'(u)3@&u'(u)&u'(u)TUV
K3 3B&u'(u)1A3@&u'(u)&u'(u)T&u'(u)UV
K4 1A3@&u'(u)&u'(u)T3@&u'(u)&u'(u)TU
In 1937 Sobociński observed that in metatheorem L1 condition 3 is equivalent to

requiring that the following two theses be provable79:

S1 &pq'(3B3@pqT&f '(3Af@pTf@qTU)V)
S2 &pq'(3C3@pqT&f '(3B3Af@pTf@qTU3@pqTV)W)

In the same year he proved that, given conditions 1 and 2 of metatheorem L1, the theses
S1 and S2 are deductively equivalent. This allowed him to construct an axiom 72 words
long80:

Aj &pq'(3E3@pqT&fst'(3DfApf@p&u'(u)TU3C&r'(f@qrT)3B3A3@stTqU3At3@spTUVWX)Y)
When Leśniewski learned of axiom Aj he was able almost immediately to construct

an equivalent axiom 71 words long81:

Ak &pq'(3E3@pqT&f '(3DfApf@p&u'(u)TU&rs'(3Cf@qrT3B3A3@srTqU3Ar3@spTUVW)X)Y)
76 LEŚNIEWSKI38, pp. 31–5.
77 LEŚNIEWSKI38, p. 35.
78 SOBOCIŃSKI49, pp. 16–7.
79 SOBOCIŃSKI54, p. 19.
80 Ibid.
81 SOBOCIŃSKI60, p. 66. In SOBOCIŃSKI54, p. 19, there is a slightly different axiom with this

name, also 71 words long, but not organic.
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In 1938 Sobociński was able, by using a theses added to the system in accordance
with the extensionality directive ε, to prove thesis S1 from conditions 1 and 2 of metarule
L1. This means that condition 3 of metarule L1 is superfluous. He used this information
to establish that the following thesis, 66 words in length, is adequate as a single axiom of
protothetic82:

Al &fpq'(3DfApf@p&u'(u)TU&r'(3CfB3A3@pqTqUrV3B3@pqT3A3@rqT3@prTUVW)X)
Sobociński suggested to Leśniewski that condition 1 of metatheorem L1 could prob-

ably be weakened. In fact axioms Aj and Ak had already taken advantage of this, in a
sense. Reflecting on this and on the work which led to the discovery of axiom Al, Leśniew-
ski established in 1938 that a 62-word thesis could serve as the sole axiom of a system of
protothetic83:

Am &pq'(3E3@pqT&f '(3DfAqf@q&u'(u)TU&r'(3Cf@prT3Br3Aq3@rpTUVW)X)Y)
In 1945 Sobociński discovered four axioms 54 words in length, and thus shorter than

Am
84:

An &pq'(3C3@pqT&f '(3BfApf@p&u'(u)TU&r'(3Af@qrT3@qpTU)V)W)
Ao &pq'(3C3@pqT&f '(3BfAqf@q&u'(u)TU&r'(3Af@prT3@qpTU)V)W)
Ap &pq'(3C3@pqT&f '(3BfApf@q&u'(u)TU&r'(3Af@qrT3@qpTU)V)W)
Aq &pq'(3C3@pqT&f '(3BfAqf@p&u'(u)TU&r'(3Af@prT3@qpTU)V)W)

In 1952, reflecting on metatheorem L1, Sobociński tried to formulate an equivalent
metatheorem in which the conditions are the simplest possible. After several simplifications
he was able to prove the following metatheorem85:

L2 An axiom system is adequate as a basis for a complete system of protothetic having
the directives of �5 if from the system we can prove

(1) The following two theses:

F1 3@&u'(u)&u'(u)T
F2 &pq'(3Bp3A3@qpTqUV)

(2) The metarule M5.

82 SOBOCIŃSKI49, pp. 17, 26.
83 SOBOCIŃSKI49, pp. 18, 27.
84 SOBOCIŃSKI49, pp. 18, 27; SOBOCIŃSKI60, p. 67.
85 SOBOCIŃSKI54, p. 19.
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The possibility of defining either of the terms for implication and conjunction by
means of the other, for example, by one of the definitions

D1 &pq'(3B3Ap7@pqTU1@pqTV)
D2 &pq'(3B3Ap1@pqTU7@pqTV)

shows that in metatheorem L1 we can easily replace condition 3 by the equivalent condition
that the four laws of implication must be provable. This equivalent condition is more
directly useful in deductions starting from the conditions of metatheorem L1, and often
it is in fact easier to prove the four laws of implication directly. Between 1975 and 1979
I studied carefully the initial deductions from An and from the related axioms. In 1976
I observed that in fact the laws of implication, and hence all conditions of metarule L1,
can be proved from each of the axioms Am, An, Ao, Ap, and Aq without appealing to
the extensionality directive86. This means that deductions from these axioms can dispense
almost entirely with the theoretical considerations which led to their discovery.

During the same period I showed that there exist further theses having the same
length as axiom An which can serve as a single axiom of protothetic, and which are trivial
variations of those axioms. For example,

Ar &pq'(3C3@pqT&f '(3BfAf@&u'(u)pTpU&r'(3Af@rqT3@qpTU)V)W)
Although there are at least eight axioms of the same length, this does not suggest

that there are shorter axioms, as might be the case in systems of protothetic based on other
primitive terms, or in most other deductive theories. In this respect system �5 resembles
system �, for which there are at least eleven shortest single axioms, namely theses W12–
W22. It is fairly certain that thesis A3a, which is closely related to all of the shortest single
axioms of protothetic, is not itself adequate as an axiom of the theory, and that there is
no thesis related to A3a, shorter than An, and adequate as a single axiom for a system of
protothetic with directives equivalent to those of �5. If there is a shorter single axiom,
then its discovery must await some entirely new insight into the deductive structure of the
theory.

3.8. Protothetic based on implication

Leśniewski wanted the directives of his systems to be relatively independent of the
particular primitive terms on which the systems are based87. Obviously there must be some
adaptation between primitive terms and directives; if we tried, for example, to use the sym-
bol for implication ‘7’ in the axioms of a system whose detachment directive is formalised to
apply to the Sheffer functor ‘>’, we would almost certainly obtain an inconsistent system88.

In 1922 Leśniewski constructed a system of protothetic based on implication as its
primitive term and having directives analogous to those of �2, including the verification

86 LEBLANC85, p. 487.
87 LEŚNIEWSKI29, p. 45.
88 Cf. SOBOCIŃSKI56, p. 56.
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directive η89. The theoretical considerations which led to the construction of system �3

showed that it would be significantly simpler to base the directives of a system of implica-
tional protothetic on the latter system. In 1922 Leśniewski constructed such a system and
called it �4

90. The first axiom system of �4 and of its unnamed predecessor consisted of
the following theses91:

B1 &pq'(7Ap7@qpTU)
B2 &pqr'(7B7@pqT7A7@qrT7@prTUV)
B3 &pqr'(7B7A7@pqTrU7A7@prTrUV)
B4 &gpq'(7Cg@ppT7BgA7@p&q'(q)TpUg@qpTVW)

in which axiom B4 is a thesis establishing bivalence in the same way in which axiom A3
establishes bivalence in the systems based on equivalence.

The directives of system �4 can be described as follows:

(α) The directive for detachment of implications. Roughly speaking, this allows us to
infer from expressions of types ‘7@αβT’ and ‘α’ the corresponding expression of type
‘β’. The directive, like the corresponding directive in the equivalential system, does
not permit detachment ‘under’ a quantifier.

(β) The directive for substitution, just like the corresponding directive in the equivalential
systems.

(γ) The directive for distributing a universal quantifier over an equivalence, just like the
corresponding directive in the equivalential system.

(δ) The directive for writing definitions having the form ‘&r'(7C7B7@PQT7A7@QP TrUVrW)’, in which apparently ‘P ’ represents the definiens and ‘Q’ represents the definien-

dum92.

(ε) The directive for writing theses of extensionality. We do not know the precise form
employed, although it contained no constant terms other than the primitive symbol
for equivalence93, but it is likely that the theses had a form much like this one:&fg'(7C&p'(7Af@pTg@pTU)7B&p'(7Ag@pTf@pTU)&φ'(7Aφ<f>φ<g>U)VW)

89 LEŚNIEWSKI29, pp. 45–8.
90 LEŚNIEWSKI29, p. 48.
91 LEŚNIEWSKI29, pp. 47–8.
92 There is no detailed description of these directives. Leśniewski says in LEŚNIEWSKI29, p.

46, that he adopted this function in place of an earlier, more complex function, which he does not
specify explicitly. ‘P ’ probably represents the definiens because of the parallel form for implicational
definitions in LEŚNIEWSKI38, p. 37.

93 LEŚNIEWSKI29, p. 48.



3.8. Protothetic based on implication 37

In 1922, investigating a suggestion by Leśniewski, Tarski proved that in the system of
axioms B1, B2, B3, and B4, the last three axioms can be replaced by the following axiom94:

B5 &pqrf '(7Cf@rpT7BfAr7@p&s'(s)TUf@rqTVW)
In 1925 Tarski discovered a general method of constructing single axioms for theories

based on implication95. If this method is applied to the last mentioned axiom system, we
obtain the following single axiom for system �4, which contains 70 words:

As &pqrs'(7F7E7Ap7@qpTU7D&pqrf '(7Cf@rpT7BfAr7@p&q'(q)TUf@rqTVW)rXY7@srTZ)
This axiom As appears to be roughly at the same stage of development as axiom Ah or Ai

in terms of the state of investigations of single axioms for system �5. That is, we have not
yet discovered any shorter axioms; they almost certainly exist, but we shall not discover
them until we understand the deductive structure of �4 better.

3.9. Computative protothetic

In 1920 ÃLukasiewicz published an article which attempts ‘to interpret two-valued logic
in such a way that three-valued logic will prove a natural extension of it’96. The resulting
system is quite unusual, since the style in which it is constructed does not resemble that
of any previous system. As ÃLukasiewicz had not yet invented his own bracketless notation,
he used a Boole-Schröder-Couturat notation with slight modifications. In this system there
are signs of assertion and of rejection: the sign of assertion is ‘U �’ and the sign of rejection
is ‘N �’. There are three axioms97:

T1 U �Πp �0 < p ([p]�0p)
T2 U �Πp �p < 1 ([p]�p1)
Z3 N �1 < 0 (10)

In addition to these, the system has a number of definitions98:

D1 U �Πp �p’�(p < 0) ([p]��p���p0)
D2a U �Πpr �p+ r� [(p < r) < r] ([pr]�p�r���pr��r)
D3 U �Πpr �pr�(p’+r’)’ ([pr]�p�r����(�p��r))
D4 U �Πpr �(p = r)�(p < r)(r < p) ([pr]�p = r���pr�rp)

The system has four directives99:

(a) We can assert any expression which we can obtain from an asserted expression by
substituting ‘0’ or ‘1’ for variables bound by the main quantifier of the original asserted
expression.

94 LEŚNIEWSKI29, p. 50.
95 LEŚNIEWSKI29, pp. 58–9.
96 ÃLUKASIEWICZ20, p. 189.
97 ÃLUKASIEWICZ20, p. 202.
98 Ibid. Note that ‘�’ is used for definition, ‘=’ for material equivalence.
99 ÃLUKASIEWICZ20, p. 197.
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(b) In any asserted or rejected expression we can replace expressions containing a defined
term by the corresponding expression not containing a defined term, or vice versa.
The resulting expression is asserted or rejected according as the original expression is
asserted or rejected.

(c) In any asserted or rejected expression we can replace any ‘1’ with any asserted expres-
sion, and we can replace any ‘0’ with any rejected expression. The resulting expression
is asserted or rejected according as the original expression is asserted or rejected.

(d) We can assert an expression beginning with a universal quantifier if all expressions
are asserted which result from the original expression by substituting ‘0’ or ‘1’ for the
variables bound by its main quantifier.

Leśniewski had already been influenced by this article in 1922 when he formulated
directive η of system �2. During the academic year 1924–5 at the University of Warsaw,
he proposed this article as a subject for discussion at a seminar he was conducting. In
the light of the ensuing discussion, Leśniewski constructed in 1924 a system of protothetic
whose style of development resembled the style of ÃLukasiewicz’s system more closely than
that of �5. Concerning this system he wrote that

Since I took ÃLukasiewicz’s construction to a very significant extent as a model, I was
concerned to employ an ‘automatic verification’ style in my new system, as opposed
to the much more common ‘substitution/detachment’ style100.

Leśniewski’s new system of ‘computative’ protothetic was based on the primitive terms
‘7’ and ‘Λ’. It had as its single axiom the thesis

A 7@ΛΛT
and it is developed with the help of nine directives101:

(a) Given theses of types ‘α’ and ‘β’, we can add the corresponding expression of type
‘7@αβT’ as a new thesis.

(b) Given theses of types ‘α’ and ‘7@βΛT’, we can add the corresponding expression of

type ‘7A7@αβTΛU’ as a new thesis.

(c) Given theses of types ‘7@αΛT’ and ‘β’, we can add the corresponding expression of
type ‘7@αβT’ as a new thesis.

(d) Given theses of types ‘7@αΛT’ and ‘7@βΛT’, we can add the corresponding expression
of type ‘7@αβT’ as a new thesis.

(e) We may add to the system definitions having the form of an expression of the type7C7B7@PQT7A7@QP TΛUVΛW
or of the same type enclosed in a univeral quantifier. The expressions ‘P ’ and ‘Q’
represent respectively the definiens and the definiendum of the definition.

100 LEŚNIEWSKI38, p. 35.
101 LEŚNIEWSKI38, pp. 37–8.
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(f) Given a definition whose definiens is a thesis (or a substitution of whose definiens is a
thesis) we may add as a new thesis the definiendum (or the corresponding substitution
of the definiendum).

(g) Given a definition whose definiens (or a substitution of whose definiens is negated by
a thesis of the type ‘7@αΛT’, we may add a new thesis which negates the definiendum
(or the corresponding substitution of the definiendum).

(h) This directive resembles directive η of system �2. In each semantic category there
can be defined a finite number of basic constants, whose definitions must conform
to a certain ‘schema characterised in an inductive manner’ by the directive102. One
expression may be described as a basic substitution of another if each variable bound
by the main quantifier of the second expression is replaced in the first expression
by an appropriate basic constant. Now, given that all basic constants have been
defined in the semantic categories of all variables bound by the main quantifier of a
generalisation, and given that all possible basic substitutions of this generalisation
are already theses of the system, this directive permits us to add the generalisation
as a new thesis.

(i) If one basic substitution of a generalisation is negated by a thesis of the system, we
may add the negation of the generalisation to the system as a new thesis.

Leśniewski briefly contrasts the resulting system with ÃLukasiewicz’s, and makes the
following remarks103:

(1) The new system has nothing corresponding to ÃLukasiewicz’s signs of assertion and
rejection104.

(2) The primitive terms of Leśniewski’s system are the words for implication ‘7’ and for
logical ‘null’ ‘Λ’, while ÃLukasiewicz uses an additional primitive logical ‘one’105.

(3) ÃLukasiewicz’s system is based on three axioms, two of which contain variables. The
new system is based on a single axiom containing no variables.

(4) Leśniewski’s system, unlike its predecessor, has a directive which explicitly permits
definitions to be added to the system.

(5) Unlike ÃLukasiewicz’s system, the new one does not have a substitution directive.

After describing informally the directives of his system of computative protothetic,
Leśniewski presents a deduction in the system based on the axiom ‘7@ΛΛT’. The deduction
proves on this basis the thesis106&f '(7BfAf@&p'(p)TU&p'(f@pT)V)

102 ref LEŚNIEWSKI38, p. 38. According to SÃLUPECKI53, p. 80, Leśniewski referred referred to
these constants as ‘verifiers’ in his lectures.

103 LEŚNIEWSKI38, p. 36.
104 Leśniewski gives no reason here for this change, but elsewhere he wrote an extensive attack

on assertion signs, charging that their meaning is ambiguous. See LEŚNIEWSKI27, pp. 170–5.
105 Leśniewski remarks that we ought also to count among the primitive terms of ÃLukasiewicz’s

system his ‘defined’ terms and his definitional sign of equality. See LEŚNIEWSKI38, p. 36.
106 LEŚNIEWSKI38, p. 41. Cf. the similar thesis in MEREDITH51, section 1.ii, p. 37.
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which is an implicational form of the thesis discovered by Tarski in 1922 and mentioned
above in connection with thesis A3a. In the next chapter I shall present a similar system
as an example of computative protothetic based on equivalence.

3.10. Alternative systems of computative protothetic

Altogether Leśniewski constructed some sixteen systems of computative protothetic
based on ten different combinations of primitive terms107. Each system has two primitive
terms, one a propositional constant, and the other a functor having the Ajdukiewicz index
‘ s
s s’. Almost all of these systems date from 1924. The exceptions date from 1933, and in the
table which follows they have the negation forms ‘2@pΛT’, ‘2@ΛpT’, ‘>@pVT’, and ‘>@VpT’108.
This table gives the primitive terms and the form of negation used in each system, together
with an example of a function which could be used to represent definitional equivalence in
each system.

s
s s s negation definitions2 Λ 2@pΛT 2B2Ap2@qΛUT2A2@pΛTqUV2 Λ 2@ΛpT 2B2Ap2@ΛqUT2A2@ΛpTqUV2 Λ 2@ppT 2B2Ap2@qqUT2A2@ppTqUV2 V 2@ppT 2B2Ap2@qqUT2A2@ppTqUV3 Λ 3@pΛT 3@pqT3 Λ 3@ΛpT 3@pqT4 V 4@pVT 4B4@pqT4A4@qpTVUV7 Λ 7@pΛT 7C7B7@pqT7A7@qpTΛUVΛW8 V 8@VpT 8B8AV8@pqTU8@qpTV; Λ ;@ΛpT ;CΛ;B;AΛ;@pqTU;@qpTVW< V <@pVT <A<@pqTVU< V <@VpT <AV<@pqTU> Λ >@ppT >B>@pqT>A>@ppT>@qqTUV> V >@ppT >B>@pqT>A>@ppT>@qqTUV> V >@pVT >B>@pqT>A>@pVT>@qVTUV> V >@VpT >B>@pqT>A>@VpT>@VqTUV
Leśniewski also knew that, like equivalence, inequivalence could be used as a conve-

nient means of expressing definitions109. If we use inequivalence to express definitions, the

107 LEŚNIEWSKI38, pp. 41–2.
108 LEŚNIEWSKI38, p. 42.
109 I learned of this unpublished remark from Prof. CzesÃlaw Lejewski.
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form of definitions can be simplified in at least four of the above systems, namely those
including ‘7’, ‘;’, or ‘<’ among their primitive terms.

The directives of each of these systems of computative protothetic are exactly ana-
logous to those of the system explained above. Obviously directives a–d must be adjusted
to suit the truth conditions of the primitive functor, directives e–g must be adjusted to
take into account the intended form for definitions, and directives g, i, and any directives
a–d which involve negation, must be adjusted to take into account the intended form for
negations110.

In each system, the sole axiom is the shortest true expression which can be constructed
out of the primitive terms; that is, in systems having the primitive term ‘V’, the axiom
consists of this term, while in systems having the primitive term ‘Λ’, the axiom has the
form ‘φ@ΛΛT’, where ‘φ’ is the primitive functor111.

Every system of computative protothetic constructed by Leśniewski has exactly two
primitive terms. Because he is known to have insisted that the number of primitive terms
must be kept to a minimum112, it is clear that his understanding of computative protothetic
did not allow him to substitute for the primitive term ‘Λ’ the expression ‘&u'(u)’, even though
the truth conditions of both are ordinarily the same.

It is not difficult to see that the ten combinations of primitive terms appearing in the
above systems are the only possible bases for systems of computative protothetic, that is,
unless we increase either the number of directives113 or the number of primitive terms114.
For the primitive terms must be able to express negation and equivalence without using
quantifiers. Equivalence cannot be expressed unless the truth value of sentences whose
functor is the primitive functor depends in some way on two arguments of the functor; that
is, the functors of one argument are insufficient, the truth values of functions whose functors
are ‘0’ and ‘?’ are not affected by the truth values of the arguments, and those whose
functors are ‘5’, ‘6’, ‘9’, and ‘:’ are affected by the truth values of just one argument.
Finally the functors of conjuntion and alternation, ‘1’ and ‘=’, are unable to express either
negation or equivalence with the help of any single propositional constant.

In 1934 Leśniewski mentioned in his lectures that systems of computative protothetic
containing the term ‘V’ among their primitive terms

have a rather troublesome property from the point of view of the harmony of these
systems, which is that in them the axiom is the only thesis which cannot be repeated
in the system115.

He suggested two ways to remove this feature: either modify the directives to forbid repeat-
ing any thesis, or replace the axiom with a new directive allowing us to add to the system

110 Cf. LEŚNIEWSKI38, pp. 41–2.
111 LEŚNIEWSKI38, p. 41.
112 SOBOCIŃSKI56, p. 58. Cf. also LEŚNIEWSKI29, p. 11.
113 For example, we could easily construct systems of computative protothetic based on two

terms, one of which is a sentence-forming functor which requires three sentences as arguments.
114 It is possible to construct a system of computative protothetic based on three independent

primitive terms. Cf. LEJEWSKI68.
115 LEŚNIEWSKI38,pp. 42–3.
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as a new thesis any expression equiform with the deleted axiom. The latter method is of
interest because the resulting system of protothetic has no axiom at all.

In general, the various alternative systems of computative protothetic provide us with
an excellent example of systems whose directives are formulated in such a way that parallel
systems can easily be constructed based on different primitive terms116.

116 Cf. LEŚNIEWSKI29, p. 45, and LEŚNIEWSKI31, p. 292.



4. A System of Computative Protothetic

In this chapter we shall construct a system of computative protothetic based on the primitive
terms ‘3’ and ‘Λ’. The directives of this system are stated informally after discussing certain
problems that arise in the interpretation of Leśniewski’s systems of computative protothetic.
The system we construct nevertheless conforms to the formal statement of its directives,
which follows later. The formal directives may be understood more easily when the system
which they describe is already familiar, and when the restrictions which they incorporate
have been grasped by seeing them in action.

4.1. Comments and problems

Any attempt to construct systems of computative protothetic, or similar systems
which we may wish to call by some other name, must decide which restrictions should be
placed on each of the directives. There is no doubt that variants are possible; for example, I
have constructed a system of ‘computative protothetic’ which does not restrict any semantic
category to a finite number of constants; in other words, like �5 and unlike �2, it allows
us to define synonyms which have different shapes. It is our present purpose, however, to
construct a system of computative protothetic which resembles as closely as possible those
constructed by Leśniewski, and which can be used for similar purposes.

It is most important that the directives of a system of computative protothetic incor-
porate mechanisms which guarantee that directive h for verification is appropriately applied,
and that directive e for definition allows us to define all the terms we need for directive h,
and only those terms. The solution which I propose is, I believe, a very plausible one; that
is, I think it is probably very close in most details to whatever solution Leśniewski actually
formulated privately and discussed informally in LEŚNIEWSKI38. My solution is based on
my understanding of ‘automatic verification’ and of the purpose of each of the directives.

The style of procedure which Leśniewski calls ‘automatic verification’ is designed so
that in most cases there is only one way to prove or disprove a given expression. Every
meaningful expression in protothetic is either a term, a function, or a generalisation1. Such
an expression is ‘decided’ when it is proved, or when its negation is proved. With the
exception of the axiom and of definitions added in conformity with directive e, each kind
of meaningful expression is decided in only one way. Generalisations must be proved by
directive h and disproved by directive i. Defined propositional terms must be proved by
directive f and disproved by directive g. Propositional functions whose functor is not the
primitive functor must be proved by directive f and disproved by directive g. Propositional
functions whose functor is the primitive functor must be proved or disproved by directives
a–d, depending on how their arguments have been decided; it is clear from the statement
of directives a–d that both of their arguments must have been decided2. Given any mean-
ingful expression which has not yet been decided, to disprove it we must first disprove (or

1 LEŚNIEWSKI31, p. 301.
2 Quine suggested simplifying the system of computative protothetic based on implication by

combining its directives a, c, and d into one directive, stating that you can add an implication if
either its consequent is a thesis, or its antecedent is negated in a thesis; see QUINE40, p. 84. A
directive of this kind could not easily be adapted to other primitive terms, and would thus destroy
the parallel that exists between various systems of computative protothetic. Moreover, the directive

43
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prove) some ‘simpler’ expression, while to prove the given expression we must first prove
(or disprove) the same ‘simpler’ expression.

I have said that ‘in most cases’ there is only one way for a given meaningful expression
to be decided. I shall state the exceptions explicitly, although some of them are fairly trivial:

(1) The directive for definitions has not been specified explicitly. It is, however, very
likely that the ‘schema characterised in an inductive manner’ leaves us free to chose
not only which term to define next but also just how we shall define it.

(2) There is often more than one way to prove a given thesis by applying directive i.

Thus, for example, assuming that we have proved both that 7A,@ΛTΛU and that 7A,@VTΛU, and that we wish to prove that 7A&p'(,@pT)ΛU, then we may apply directive
i to either of the former expressions.

(3) After a thesis has been proved, it can often be repeated by appealing to some directive
other than the one by which it was first introduced. For example, after proving the

thesis 7A,@ΛTΛU, we can repeat it by using directive d, although we cannot possibly
have used directive d to introduce the first thesis of this form.

(4) After a thesis has been repeated, subsequent justifications can appeal to either of the
equiform theses without distinguishing between them.

We know that in Leśniewski’s systems the concept of ‘meaningful expression’ grows
as the system grows, being extended as new terms are defined. Although an expression
such as ‘&u'(u)’ has meaning at an early stage of development in systems of computative
protothetic, it is clearly unable to replace the primitive term ‘Λ’ in those systems in which
that term is primitive. In system�5, as in most of Leśniewski’s deductive theories, variables
are meaningful not only in any category in which a constant exists, but also in the category
of sentences (and of names, if names have meaning in the system). Sentence variables
are apparently not allowed in the axioms of computative protothetic, otherwise we could
reduce the number of primitive terms. It is likely that a different restriction applies: almost
certainly variables are not allowed in any semantic category in a system of computative
protothetic until enough basic constants have been introduced to ‘exhaust’ that category.
An alternative possibility is that variables are allowed in any semantic category only after
at least one constant has appeared in that category. If this policy is adopted, however, a
serious problem arises, in that one can define a new term in such a way that some expressions
containing it cannot be decided. For example, we might introduce into our equivalential
system the definition&pq'(3C&fr'(3B3Af@prTf@qrTUqV)1@pqTW)
To prove from this definition the law of conjunction which says that 1@VVT, we must first

prove, among others, a thesis which says that 3B3A1@VVT1@VVTUVV, but we cannot prove this
without first proving the required law of conjunction. Hence that law of conjunction can not

formulated by Quine does not require that both arguments of an implication be decided before the
implication is decided, and this is contrary to ‘automatic verification’ as I understand it.
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be proved on the basis of this definition. It is not easy to allow variables in categories which
have not been exhausted and in the same system to prevent definitions from introducing
the possibility of meaningful expressions which cannot be decided. For this reason I do not
allow variables in any semantic category in the system until constants have been introduced
which ‘exhaust’ the given category. In practice this can be understood as extending the
concept of meaningful expression whenever a variable is introduced into a category in which
previously no variable has appeared, so that variables in that category become meaningful
at that point.

The mechanism for determining that a category has been exhausted is complex, and
probably should not be allowed to complicate the definition directive e. For this reason
I have placed in directive e the restriction that variables may appear in a given semantic
category only if a previous thesis contains a variable in that category. I believe Leśniewski’s
systems very likely incorporated a similar restriction. For similar reasons I have restricted
directive i so that it cannot introduce variables into a semantic category for the first time.
One may argue that this is likely to be a departure from Leśniewski’s system, but it does
somewhat simplify this difficult directive, and thus helps make it somewhat more intelligible.
Therefore, in my system only directive h can extend the concept of meaningful expressions
by introducing variables into a semantic category in which they have not previously oc-
curred.

Because only a finite number of constants can be introduced into any semantic cat-
egory, computative protothetic does not allow us to define ‘synonyms’ for constants, and
this causes a problem. In �5 there is no restriction on the shapes of variables: we can have
two words of the same shape in the same thesis, one of which is a constant, and the other of
which is a variable3. In most proofs we can eliminate any problematic constant by defining
a synonym which will replace the constant temporarily during the proof4. But this strategy
is not available in computative protothetic. For example, to prove an expression containing
‘nested’ generalisations, such as&x'(φA&f '(f@xT)U)
we must first prove a series of corresponding theses of the type ‘φA&f '(f@aT)U’, in each of
which the word ‘a’ represents a different constant in the semantic category of the variable
‘x’ in the former expression. If the variable ‘f ’ is equiform with any constant ‘a’ in the
semantic category of ‘x’, then the nested generalisation is not provable, because no corre-
sponding thesis can be proved containing the constant ‘a’ equiform with the variable ‘f ’5.
For this reason computative protothetic must place some restriction on the shapes available
for variables. I have chosen the simplest restriction, which is also the most restrictive: no
variable in any thesis may have the same shape as any constant. This restriction affects

3 Cf. remark A, LEŚNIEWSKI29, p. 76.
4 I noted many years ago that this method cannot be applied to the primitive term in �5

when distribution of the quantifier is involved; for example, I do not know of any way to prove in�5 that 3@&u'(u)&3'(3)T. For this reason I suggested in the draught of LEBLANC85, which I submitted
for publication in 1979, that the directives of �5 should be modified so that no variable might be
allowed to have the same shape as the primitive term ‘3’. This suggestion, which was peripheral
to the main topic of the article, was removed by the editor (without my approval or knowledge)
before the article actually appeared some six years later.

5 Cf. terminological explanation XIV, LEŚNIEWSKI29, p. 65.
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directives e, h, and i. It is almost certain that Leśniewski’s systems of computative proto-
thetic incorporated the same restriction. The simplest alternative, permitting one variable
shape to be substituted for another, is explicitly rejected by Leśniewski6.

Leśniewski says that the directives h and i of his system of computative protothetic
appeal to certain ‘basic constants’, including the primitive terms;

and, moreover, a finite number of these shall be defined for each semantic category ap-
pearing in the system, according to a schema characterised in advance in an inductive
way7.

To someone unfamiliar with Leśniewski’s work, this sounds as though the definition directive
states that if definition n has such-and-such a form, then definition n+1 has such-and-such
a different form. In the light of all of Leśniewski’s published directives and explanations,
it is most unlikely that the definition directive specifies any definition in its entirety or
invokes mathematical induction explicitly. Moreover, the above passage occurs not in the
description of the definition directive e, but in the description of the verification directive
h.

I believe that the definition directives in Leśniewski’s systems of computative proto-
thetic are likely to have been quite similar to the corresponding directives in systems �4

and �5
8. To the eighteen conditions specified there, my definition directives add conditions

preventing any variable from having the same shape as any term, forbidding variables in any
semantic category which has not yet been ‘exhausted’, and preventing any definition from
introducing a synonym for any constant which occurs in the system before the definition is
added. These restrictions are sufficient in practice to assure us that the resulting system of
computative protothetic is consistent and complete.

The following is the simplest method I can find of determining that a group of con-
stants ‘exhaust’ a semantic category when appealing to directive h. Every constant in a
system of computative protothetic, whether primitive or defined, is characterised by a finite
number of critical expressions. A critical expression is a term or function in the semantic
category of sentences whose first word is the constant being characterised; if it is a function,
every argument of every ‘parentheme’9 of the function must be a constant. For example,
the critical expressions for the functor of implication are ‘7@ΛΛT’, ‘7@ΛVT’, ‘7@VΛT’, and
‘7@VVT’. A critical expression for one constant is said to correspond to a critical expression
for another constant whenever every word in the first expression except the first word is
equiform with the corresponding word in the second expression. Thus, for example, the ex-
pression ‘1@ΛVT’ corresponds to the second of the above critical expressions for implication.

Corresponding critical expressions are similar when they are both proved, or both
disproved. Thus, assuming that all of the following critical expressions have been decided
appropriately, the expressions ‘7@ΛΛT’ and ‘3@ΛΛT’, like the expressions ‘7@VVT’ and ‘3@VVT’, are similar, because in each pair both theses are proved when they are decided.

6 Remark e, LEŚNIEWSKI38, p. 36.
7 LEŚNIEWSKI38, p. 38.
8 The directives of system �4 were never published. The definition directive for �5 appears

as terminological explanation XLIV in LEŚNIEWSKI29, pp. 70–2.
9 ‘prntm’ in the terminology of Chapter 2. Recall that in Leśniewski’s theories a function

may have more than one group of parenthesised arguments. Cf. terminological explanation XVIII,
LEŚNIEWSKI29, p. 66.
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The expressions ‘7@VΛT’ and ‘3@VΛT’ are similar because both are disproved when they are
decided. On the other hand, the expressions ‘7@ΛVT’ and ‘3@ΛVT’ are dissimilar, because
the former is proved, while the latter is disproved.

A group of constants exhaust a semantic category when the following conditions are
fulfilled10:

(1) All possible critical expressions for each constant have been decided.

(2) Given any critical expression A whose first term belongs to the given category, there
exists a constant B such that (a) A and a corresponding critical expression for B are
dissimilar, and (b) any critical expression which is not equiform with A but begins
with the same constant is similar to a corresponding critical expression for B.

I shall present in this chapter a system of computative protothetic based on the
primitive terms ‘3’ and ‘Λ’, having negations of the type ‘3@pΛT’ and definitions of the type
‘3@pqT’. This combination of primitive terms leads to the simplest possible formulation of
directive e for definitions. Moreover, it is easier to compare this system with and to prove it
equivalent to a ‘standard’ system of protothetic having the directives of �5, since the two
systems have a common primitive term. In this system I shall prove the following theses,
which are particularly useful in later discussion:

C25 &pqr'(3B3@pqT3A3@rqT3@prTUV)
C26 3@&u'(u)ΛT
C82 &f '(3BfAf@&u'(u)TU&p'(f@pT)V)
C94 &pq'(3B3@pqT&f '(3Af@pTf@qTUV)
C96 7@ΛΛT
C97 7@ΛVT
C98 7@VVT
C99 3A7@VΛTΛU

4.2. Directives

In this section I shall state the directives of my system of computative protothetic
informally. The style of the directives resembles that employed to describe Leśniewski’s sys-
tem of implicational computative protothetic in section 3.9, but with more of the necessary
conditions stated explicitly. These directives can be understood fully only when they are
compared with their formal statement in Chapter 6. Nevertheless, the informal statement
of the directives, together with the examples of their application in the next section of this
chapter, should make their formal statement easier to follow. There are nine directives:

(a) Given theses of types ‘α’ and ‘β’, we can add the corresponding expression of type
‘3@αβT’ to the system as a new thesis.

10 Conditions 1 and 2, which appear weaker than the more intuitive conditions stated informally
at the end of section 4.1, are in fact equivalent to them in the context of the directives of system
C, but allow us to verify in a simpler manner that the given constants exhaust the given category.
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(b) Given theses of types ‘α’ and ‘3@βΛT’, we can add the corresponding expression of

type ‘3A3@αβTΛU’ to the system as a new thesis.

(c) Given theses of types ‘3@αΛT’ and ‘β’, we can add the corresponding expression of

type ‘3A3@αβTΛU’ to the system as a new thesis.

(d) Given theses of types ‘3@αΛT’ and ‘3@βΛT’, we can add the corresponding expression
of type ‘3@αβT’ to the system as a new thesis.

(e) We may add to the system a definition of the type ‘3@αβT’, or of the same type enclosed
in a universal quantifier, provided that it fulfills the eighteen conditions specified in
terminological explanation XLIV of system �5, as well as the following conditions:

(1) No variable in the definition is equiform with any constant in any thesis belong-
ing to the system.

(2) No variable in the definition is equiform with the constant being defined.

(3) The new constant is not equiform with any variable in any thesis belonging to
the system.

(4) For every variable in the definition there is a variable in the same semantic
category in some thesis already belonging to the system.

(5) The new constant will not be synonymous with any constant in the same cate-
gory which already occurs in the system. We ensure this by requiring that for
each existing constant in that category a critical expression has been decided in
such a way that we will be able to prove, with the help of either directive f or
directive g, a dissimilar corresponding critical expression for the newly defined
term.

(f) Given a definition and another thesis which is equiform with its definiens (or which
is a correct substitution11 of its definiens), we may add to the system a new thesis
equiform with the definiendum (or which is the corresponding substitution of the
definiendum).

(g) Given a definition and another thesis which negates an expression equiform with
its definiens (or which negates an expression which is a correct substitution of its
definiens), we may add to the system a new thesis which negates an expression
equiform with the definiendum (or which negates the corresponding substitution of
the definiendum).

(h) Given a generalisation such that each term in its quantifier binds a variable in whose
semantic category there exist in the system constants which ‘exhaust’ that category,
and given that the system already contains as a thesis every meaningful substitution
of the generalisation in which each variable is replaced by a constant, then we may

11 As in Leśniewski’s system of computative protothetic for implication, there is no rule of
substitution. The directives f and g are restricted forms of what some authors have called ‘rules of
replacement’, since they allow us to infer a thesis containing a defined term from one not containing
the term.
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add the generalisation to the system as a new thesis. The constants in a semantic
category ‘exhaust’ that category when the following conditions are fulfilled:

(1) For each critical expression A whose first word belongs to the semantic category,
there is a constant B in the same category such that

(i) Any critical expression for the constant beginning A which is not equiform
with A is similar to a corresponding critical expression for B.

(ii) A is dissimilar to some corresponding critical expression for B.

(2) There is at least one constant in the semantic category for which all possible
critical expressions have been decided.

(i) Given a generalisation such that each term in its quantifier binds a variable in a
semantic category in which some variable already exists in some thesis already be-
longing to the system, and given a thesis in the system which disproves an expression
which is a substitution of the generalisation in which each variable bound by the
main quantifier of the generalisation is replaced by a constant term, we may add to
the system a new thesis which negates the given generalisation.

When the system is actually being constructed, we extend it by writing the new theses
at the end of the system. In addition to the written theses, which actually belong to the
system being constructed, it is customary to write certain other information which does not
actually belong to the system. This information includes a unique name for each thesis,
which is written to its left, and a justification for adding each thesis, which appears to the
right in square brackets.

The justification mentions the directive which enables us to add the thesis in question,
then lists the previous theses to which we must refer when we verify that the directive
applies in the present case. We shall not list all previous theses even though the directive
may require us to examine them, but we shall list theses containing a variable in a given
semantic category when these are required by directives e and i, theses which decide critical
expressions which are required by directives e and h, and other theses which directive e
requires to establish that the term being defined differs from any existing term in the same
semantic category. Theses are mentioned only once in a justification, even if the directive
appeals to them several times for different purposes.

4.3. The system C

I call this system of computative protothetic system C. It is based on the following
axiom:

C1 3@ΛΛT
First we prove some theses which are meaningful relative to axiom C1.

C2 3A3@ΛΛT3@ΛΛTU [
a, C1

]

C3 3B3A3@ΛΛTΛUΛV [
b, C1

]
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C4 3B3@ΛΛT3A3@ΛΛT3@ΛΛTUV [
a, C1, C2

]

At this point we extend the concept of meaningful expression in C by defining a new
constant, a true sentence.

C5 3A3@ΛΛTVU [
e, C1

]

C6 V
[
f , C5, C1

]

C7 3@VVT [
a, C6

]

C8 3A3@VΛTΛU [
b, C6, C1

]

C9 3A3@ΛVTΛU [
c, C1, C6

]

C10 3A3@VVT3@VVTU [
a, C7

]

C11 3B3A3@VVTΛUΛV [
b, C7, C1

]

C12 3B3A3@ΛΛT3@VΛTUΛV [
b, C1, C8

]

C13 3B3A3@VΛT3@VVTUΛV [
c, C8, C7

]

C14 3B3A3@ΛVT3@ΛΛTUΛV [
c, C9, C1

]

C15 3B3A3@VVT3@ΛVTUΛV [
b, C7, C9

]

C16 3A3@VΛT3@ΛVTU [
d, C8, C9

]

C17 3A3@ΛVT3@VΛTU [
d, C9, C8

]

C18 3B3@VVT3A3@VVT3@VVTUV [
a, C7, C10

]

C19 3B3@VΛT3A3@ΛΛT3@VΛTUV [
d, C8, C12

]

C20 3B3@VΛT3A3@VΛT3@VVTUV [
d, C8, C13

]

C21 3B3@ΛVT3A3@ΛVT3@ΛΛTUV [
d, C9, C14

]

C22 3B3@ΛVT3A3@VVT3@ΛVTUV [
d, C9, C15

]

C23 3B3@ΛΛT3A3@VΛT3@ΛVTUV [
a, C1, C16

]

C24 3B3@VVT3A3@ΛVT3@VΛTUV [
a, C7, C17

]

The two propositional constants in fact ‘exhaust’ the semantic category of sentences.
Thus we can apply directive h, extending the concept of meaningful expression in system
C to allow variables in the semantic category of sentences.
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C25 &pqr'(3B3@pqT3A3@rqT3@prTUV)
[
h, C1, C6, C4, C18, C19, C20, C21, C22, C23, C24

]

Thesis C25 corresponds to ÃLukasiewicz’s axiom W12 for system �.

C26 3@&u'(u)ΛT [
i, C25, C1

]

In systems of protothetic with the directives of �5, a thesis corresponding to C26
can serve as the definition of ‘Λ’.

C27 3@&u'(u)&u'(u)T [
d, C26

]

C28 3B3A3@&u'(u)&u'(u)TΛUΛV [
b, C27, C1

]

The following definition introduces not only a new constant but also a new semantic
category, which contains expressions with the Ajdukiewicz index ‘ss’.

C29 &p'(3Ap-@pTU) [
e, C25

]

C30 3A-@ΛTΛU [
g, C29, C1

]

C31 -@VT [
f , C29, C6

]

C32 3A-@&u'(u)TΛU [
g, C29, C26

]

C33 3A-@ΛT-@ΛTU [
d, C30

]

C34 3A&p'(-@pT)ΛU [
i, C25, C30

]

C35 3A-@VT-@VTU [
a, C31

]

C36 3B3A-@VT-@ΛTUΛV [
b, C31, C30

]

C37 3B3A-@ΛT-@VTUΛV [
c, C30, C31

]

C38 3B-A-@&u'(u)TUΛV [
g, C29, C32

]

C39 3C3B3A-@ΛT-@ΛTUΛVΛW [
b, C33, C1

]

C40 3B3A-@VT-@VTUVV [
a, C35, C6

]

C41 3C3B3A-@ΛT-@VTUVVΛW [
c, C37, C6

]

C42 3B-A-@&u'(u)TU&p'(-@pT)V [
d, C38, C34

]

Three more definitions, C43, C56, and C67, introduce three additional constants in
the same semantic category as ‘-’.
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C43 &p'(3A3@ppT/@pTU) [
e, C25, C30, C1

]

C44 /@ΛT [
f , C43, C1

]

C45 /@VT [
f , C43, C7

]

C46 /@&u'(u)T [
f , C43, C27

]

C47 3A/@ΛT/@ΛTU [
a, C44

]

C48 3A/@VT/@VTU [
a, C45

]

C49 3A/@VT/@ΛTU [
a, C45, C44

]

C50 &p'(/@pT) [
h, C1, C6, C44, C45

]

C51 3A/@&u'(u)T/@&u'(u)TU [
a, C46

]

C52 3B3A/@VT/@VTUVV [
a, C48, C6

]

C53 3C3B3A/@VT/@ΛTUΛVΛW [
b, C49, C1

]

C54 /A/@&u'(u)TU [
f , C43, C51

]

C55 3B/A/@&u'(u)TU&p'(/@pT)V [
a, C54, C50

]

C56 &p'(3A3@pΛT.@pTU) [
e, C25, C8, C31, C45

]

C57 .@ΛT [
f , C56, C1

]

C58 3A.@VTΛU [
g, C56, C8

]

C59 .@&u'(u)T [
f , C56, C26

]

C60 3A.@ΛT.@ΛTU [
a, C57

]

C61 3A.@VT.@VTU [
d, C58

]

C62 3A&p'(.@pT)ΛU [
i, C25, C58

]

C63 3B3A.@&u'(u)TΛUΛV [
b, C59, C1

]

C64 3B3A.@VT.@VTUVV [
a, C61, C6

]

C65 3B.A.@&u'(u)TUΛV [
g, C56, C63

]

C66 3B.A.@&u'(u)TU&p'(.@pT)V [
d, C65, C62

]
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C67 &p'(3B3A3@ppTΛU,@pTV) [
e, C25, C11, C31, C45, C3, C57

]

C68 3A,@ΛTΛU [
g, C67, C3

]

C69 3A,@VTΛU [
g, C67, C11

]

C70 3A,@&u'(u)TΛU [
g, C67, C28

]

C71 3A,@ΛT,@ΛTU [
d, C68

]

C72 3A&p'(,@pT)ΛU [
i, C25, C68

]

C73 3A,@VT,@VTU [
d, C69

]

C74 3A,@&u'(u)T,@&u'(u)TU [
d, C70

]

C75 3B3A,@VT,@VTUVV [
a, C73, C6

]

C76 3C3B3A,@&u'(u)T,@&u'(u)TUΛVΛW [
b, C74, C1

]

C77 3B,A,@&u'(u)TUΛV [
g, C67, C76

]

C78 3B,A,@&u'(u)TU&p'(,@pT)V [
d, C77, C72

]

At this point we use directive h to extend the concept of meaningful expressions to
include variables in the semantic category of ‘ss’ functors.

C79 &f '(3Af@ΛTf@ΛTU)
[
h, C30, C31, C44, C45, C57, C58, C68, C69, C33, C47, C60, C71

]

C80 &f '(3Af@VTf@VTU)
[
h, C30, C31, C44, C45, C57, C58, C68, C69, C35, C48, C61, C73

]

C81 &f '(3B3Af@VTf@VTUVV)
[
h, C30, C31, C44, C45, C57, C58, C68, C69, C40, C52, C64, C75

]

C82 &f '(3BfAfA&u'(u)TU&p'(f@pT)V)
[
h, C30, C31, C44, C45, C57, C58, C68, C69, C42, C55, C66, C78

]

Thesis C82 corresponds to the thesis discovered by Tarski in 1922 which influenced
axiom Ah and all subsequent single axioms for system �5.

C83 3B3@ΛΛT&f '(3Af@ΛTf@ΛTU)V [
a, C1, C79

]

C84 3B&f '(3Af@VTf@ΛTU)ΛV [
i, C79, C36

]
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C85 3B&f '(3Af@ΛTf@VTU)ΛV [
i, C79, C37

]

C86 3C&f '(3B3Af@ΛTf@ΛTUΛV)ΛW [
i, C79, C39

]

C87 3C&f '(3B3Af@ΛTf@VTUVV)ΛW [
i, C79, C41

]

C88 3C&f '(3B3Af@VTf@ΛTUΛV)ΛW [
i, C79, C53

]

C89 3B3@VVT&f '(3Af@VTf@VTU)V [
a, C7, C80

]

C90 3C&f '(3B3Af@VTf@VTUVV)VW [
a, C81, C6

]

C91 3B3@VΛT&f '(3Af@VTf@ΛTU)V [
d, C8, C84

]

C92 3B3@ΛVT&f '(3Af@ΛTf@VTU)V [
d, C9, C85

]

C93 3D3C&f '(3B3Af@VTf@ΛTUΛV)VWΛX [
c, C88, C6

]

C94 &pq'(3B3@pqT&f '(3Af@pTf@qTU)V) [
h, C1, C6, C83, C89, C91, C92

]

Thesis C94 expresses the law of extensionality for sentences.

At this point in the development of system C we can prove the four laws of implication
after introducing that term by means of a suitable definition.

C95 &pq'(3D3C&f '(3B3Af@pTf@qTUqV)pW7@pqTX) [
e, C25, C9, C87

]

C96 7@ΛΛT [
f , C95, C86

]

C97 7@ΛVT [
f , C95, C87

]

C98 7@VVT [
f , C95, C90

]

C99 3A7@VΛTΛU [
g, C95, C93

]



5. How Leśniewski States Directives

The directives of our system of computative protothetic should conform to Leśniewski’s
requirements for directives, and if they are to be compared with the directives of �5, they
should be stated using the same basic terminology.

5.1. General requirements

Leśniewski never gave a systematic account of his requirements for well formalised
deductive systems. Sobociński has collected and discussed the requirements for primitive
terms and for axioms1. We must compile a similar account of the requirements for directives.
These, like the requirements for primitive terms and axioms, are not absolute demands but
æsthetic requirements towards which we should strive and to which we can appeal when we
compare alternative formalisations of a deductive theory.

The directives must be suited to the primitive terms of a system. In this sense the
usual detachment directive which we adopt in the classical theory of implication or in system� is not suited to the Sheffer stroke functor, because if we applied it in such a system, it
could lead to inconsistency2.

Obviously, directives must be valid. For Leśniewski validity is more than the simple
assurance that a directive will not jeopardise the system’s consistency. A truly valid directive
must ‘bind’ him to develop a deductive system only by ways which ‘harmonise’ with his
‘logical intuitions’3.

The directives should be adequate for developing the required system. Adequacy in
this sense is related to, but weaker than, the requirement that a deductive system should
be complete. In some cases, such as Leśniewski’s ontology and mereology, the system is
incomplete by design: in these cases a complete system would be less useful than the incom-
plete system. In other cases, such as system �1, we satisfy a special goal by constructing
a subsystem of a given theory.

We should be able to transpose the directives of one deductive system to another
system based on different primitive terms4. Leśniewski does not seem to have published
any explanation of this requirement, but he says, for example, that in formalising protothetic
in 1922

I took some trouble to formulate the . . . directives in such a way that one could easily
adapt them to different systems of protothetic independently of the various primitive
terms on which these systems would be based5.

He states elsewhere that anyone who is familiar with the directives of protothetic as based
on equivalence should be able ‘almost automatically’ to understand how to adapt them to

1 See SOBOCIŃSKI56.
2 Cf. SOBOCIŃSKI56, p. 56.
3 LEŚNIEWSKI29, p. 78.
4 LEŚNIEWSKI29, p. 45; cf. LEŚNIEWSKI38, p. 42.
5 LEŚNIEWSKI29, p. 14.
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produce an equivalent system of protothetic based on another primitive term6. Thus he
wishes to avoid directives which rely too heavily on special properties of one primitive term.
Nicod’s detachment directive, for example, relies too heavily on special properties of his

primitive term, because it allows us to infer from expressions of the types ‘>Aα>@βγTU’ and
‘α’ the corresponding expression of type ‘γ’. The presence of the expression corresponding
to ‘β’ indicates that the directive is in fact stronger than ordinary detachment directives,
and this has important consequences in the ‘deductive structure’ of Nicod’s system7.

The directives of a deductive system should be independent8. A directive is inde-
pendent when there is at least one thesis which can be proved only with the help of that
directive. Moreover, the theses added by a directive should be independent of each other.

Directives should be as simple as possible, because unnecessary complexity makes
it more difficult for others to understand the directive9. Simpler directives are usually
preferable even if they require a more complex axiom system. ÃLukasiewicz once said that
deductive systems should be characterised by axioms rather than by directives10. Strictly
speaking, this is impossible: even in the classical theory of implication without definitions,
the detachment directive plays a highly significant rôle in characterising the primitive term,
and in all ordinary deductive systems the substitution directive plays a fundamental rôle in
characterising variables.

There should be as few directives as possible. If a directive can be replaced by adding
a finite number of new axioms to a system, it should be replaced. In general, the resulting
system will be easier for others to understand and accept, since it is usually much easier to
assure oneself of the truth of an axiom than to verify the validity of a directive.

The directives should be exclusive in the sense that they should not refer specifically
to any defined term11. Thus, for example, in system �1, directive ‘ζ’ was intended to guar-

antee the equivalence between expressions of the type ‘&x'(7Aαφ@xTU)’ and corresponding

expressions of the type ‘7Aα&x'(φ@xT)U’. The constant ‘7’ is not a primitive term of �1. It
would be simple to formulate the directive by saying that, if any defined term is effectively
equivalent to the sign of implication, then certain expressions containing this term would
follow legitimately from certain other expressions containing this term. But a directive
formulated in this way would violate the requirement of exclusivity.

Leśniewski gave considerable attention to the statement of directives. A directive
should be stated in such a fashion that it enables us to decide whether or not a given
expression can be added legitimately to a system at a given point in its development. The
process of reaching this decision must be finite in length, and it should not require us
to examine any expression except the theses of the system and the new expression being
examined12. In this respect Leśniewski said that

6 LEŚNIEWSKI29, p. 45.
7 Cf. ÃLUKASIEWICZTARSKI30, p. 36.
8 Cf. LEŚNIEWSKI29, p. 39.
9 LEŚNIEWSKI29, p. 37.

10 ÃLUKASIEWICZ39; MCCALL67, p. 115; ÃLUKASIEWICZ70, p. 277.
11 LEŚNIEWSKI29, p. 38; cf. SOBOCIŃSKI56, p. 57-8.
12 LEŚNIEWSKI31, p. 301.
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among the works which have as their goal the construction of the foundations of
mathematics, I really do not know of a single one which establishes, in a way which
raises no doubts as to their interpretation, a combination of directives which would
suffice for the derivation of all theses actually recognised in the system in question,
and which would not at the same time lead to a contradiction in one way or another
not foreseen by the author of the given system13.

The care which Leśniewski gave to formalising his own directives led him to discover defects
in the directives, particularly in the definition directives, of deductive systems published by
other researchers14. As examples of such oversight, he showed how to derive contradictions
in the systems of Leon Chwistek and John von Neumann15.

5.2. Leśniewski’s metalanguage

Leśniewski published directives for three deductive systems: �5
16, a system of his

ontology17, and a system of the classical ‘theory of deduction’ with definitions but without
quantifiers18. The third of these represents the form in which he originally stated directives
in his university lectures: there is a series of formal explanations of the terminology which
is used to state the directives. These explanations are stated in ordinary language with the
help of variables19. After each explanation there is an example which satisfies all of the
conditions specified in the explanation, and for each condition there is an example which
does not satisfy that condition, but which satisfies all of the other conditions in the preceding
explanation. Thus the examples show that the various conditions are independent.

When he published LEŚNIEWSKI29, Leśniewski decided to alter this. There are no
examples at all, and the explanations are written using special symbols instead of ordinary
words. Directives do not actually belong to the deductive system which they describe, and
so should not be expressed in the same symbolic language20; therefore he created a different
symbolism with which to express the directives and the preliminary explanations of the
terms he uses to state the directives. Concerning this he says

The ‘symbolic’ formulations given below of the ‘terminological explanations’ and direc-
tives must be regarded simply and solely as typographical abbreviations which would
be replaced with corresponding expressions of ordinary language if there were more
space at my disposal21.

The ‘symbolic language’ of the directives of LEŚNIEWSKI29 and of LEŚNIEWSKI30, like
the ‘ordinary language’ of the directives of LEŚNIEWSKI31, is in fact not only unformalised

13 LEŚNIEWSKI29, p. 79.
14 LEŚNIEWSKI38, p. 43.
15 LEŚNIEWSKI29, pp. 79–81.
16 LEŚNIEWSKI29, pp. 63–76.
17 LEŚNIEWSKI30, pp. 116–27.
18 LEŚNIEWSKI31, pp. 292–309.
19 Actually, the language of these explanations is quite peculiar: for certain reasons many

articles are omitted in defiance of ordinary German idiom, many words have a highly technical
usage, footnotes are employed to explain the case of the uninflected variables, and there are some
very strange words, such as ‘it-is-not-true-that’ (‘esistnichtwahrdaß ’).

20 LEŚNIEWSKI29, p. 59.
21 LEŚNIEWSKI29, p. 60.
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but also not a formal system. Proofs are constructed in accordance with intuitive criteria,
not in accordance with any directives. Any presuppositions which may be required are
noted, but they do not form a systematic collection of statements which are in some sense
adequate as a basis of a theory. Leśniewski’s terminological explanations try, by including
certain logically superfluous material, to let us reach certain conclusions without appealing
to some rather abstruse linguistic premises.

We know that at some time after 1929, when he used ‘symbolic’ language in his
terminological explanations for the first time, and before his death in 1939, Leśniewski began
to use the ‘symbolic’ explanations in his university lectures22. This does not, however, in any
sense indicate a fundamental change in his position. Compare, for example, the following
explanation, which corresponds to E7 in the next chapter, but which is stated in the style
of his earlier lectures23:

I say of an object A that it is the Complex of objects a if, and only if, the following
conditions are fulfilled:

(1) A is an expression;

(2) if any object is a word in A, then it is in some a;

(3) if any object B is a, any object C is an a, and some word in B is in C, then B is the
same object as C;

(4) if any object is a, then it is an expression in A.

The language used to state terminological explanations and directives is based on Leś-
niewski’s logical intuitions, and thus has much in common with the deductive theories which
he constructed to formalise those intuitions. The ‘symbolic’ form of this ‘metalanguage’ is
based mainly on the symbolism of Peano’s Formulario Matematico and of Whitehead and
Russell’s Principia.

Many constants correspond to familiar terms in the ‘theory of deduction’ or in proto-
thetic, for example ‘if, and only if’, or ‘�’, which is used to state definitions. Leśniewski
also makes use of properties of these terms when he constructs metalogical proofs, or, more
accurately, outlines of proofs, which he presents in a form of ‘natural deduction’ which he
invented, but never explained systematically.

Variables occur only in the semantic category of names. Any variable can be replaced
by any proper name, common name, ‘empty’ name, or name-forming expression. There
are no free variables in the ‘symbolic’ language; every variable must be bound explicitly
by a universal or particular quantifier24. If Leśniewski expects that a sentence, or part of
a sentence, will be true only if a certain variable in it names exactly one object, he uses
an upper case letter for the variable; otherwise he uses lower case letters. This convention
helps us to understand statements more quickly. All variables are printed in italic type.

The term ‘is’ or ‘ε’ and several other constants correspond to terms from Leśniewski’s
ontology. The term ‘in’ or ‘ingredient’ from mereology also appears; it is used primarily

22 I learned of this from Professor CzesÃlaw Lejewski.
23 Cf. especially terminological explanation I, LEŚNIEWSKI31, p. 292.
24 I have abandoned Leśniewski’s practice of using commas between all variables in quantifiers

in the Peano/Whitehead/Russell symbolism.
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to refer to words or groups of words contained in a sentence. There are also a number of
linguistic terms, such as ‘word’, ‘expression’, and ‘parenthesis’, which are also ‘primitive’
in the sense that they are not defined formally. The ‘symbolic’ form of these and of all
constants not definable in ontology consists of several adjacent letters or digits. All of these
constants, that is all but the ‘theory of deduction’ terms and three ontological ‘verbs’, are
either names or name-forming functors, and the functors take only names as arguments.
Different constants may have the same form if they require different numbers of arguments.
All constants are printed in Roman type, and as for variables, proper names and functions
which are expected to name a single object usually begin with an upper case letter.

The following table lists and provides a way of reading the ‘primitive’ terms which
actually appear in Leśniewski’s terminological explanations25:

expression interpretation�p it-is-not-true-that p
p�q p if, and only if, q
pq if p, then q

p�q� . . . p or q or . . .
p�q� . . . p and q and . . .
[ABC] for all A, B, and C
[
ABC] for some A, B, and C
A ε b A is (a) b
Id@AT the same object as A�@aT object which is not a

a � b � . . . object which is a and b and . . .
a � b � . . . object which is a or b or . . .

a � b there are as many a as b
a � b there are fewer a than b
in@AT in A, belonging to A26

vrb word
expr expression
prnt parenthesis (left or right)
prnt1 left parenthesis

prntsym@AT parenthesis symmetrical with A
cnf@AT expression equiform with A

thp thesis of this system of protothetic
prcd@AT object preceding A
scd@AT object following A

Uprcd@AT last word preceding A
Uingr@AT last word in A
1ingr@AT first word in A
2ingr@AT second word in A

Any word in an expression can be identified by number in the same fashion; for example,
‘53ingr@AT’ names the fifty-third word in A.

25 Cf. LEŚNIEWSKI29, pp. 60–1.
26 Leśniewski uses the symbol ‘ingr’ for this term, both in his metalanguage and in mereology;

cf. LEŚNIEWSKI31A, p. 151. I have changed this to ‘in’ in the metalanguage in order to conform to
the current practice in mereology.
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In addition to the terms above, Leśniewski uses two others in the examples which
demonstrate the independence of each factor of a terminological explanation. Since he
never published examples in ‘symbolic’ form, we must invent new ‘symbols’ for them. The
first is ‘complete collection of a’, which Leśniewski probably abbreviated as ‘Kl@aT’, and
which we shall write as ‘Ccl@aT’27. The other is ‘one of the mutually equiform expressions
“φ”’, where ‘φ’ is replaced by some expression from the object language28. In this case we
shall use the corresponding expression ‘“φ”’, following the lead of Professor Lejewski in this
respect29.

Terminological explanations, as well as the directives to which they lead, may refer to
the axiom of the system in which they appear, but they may not refer to any other theses
of the system. Independence examples, on the other hand, may refer to any convenient
expression, since these examples are not actually part of the directives, but simply attempt
to clarify the explanation which they follow.

When he published his ‘symbolic’ terminological explanations, Leśniewski always
printed the ‘logical factors’ one under the other to improve perspicuity; our explanations in
the next chapter observe this convention. Moreover, we number each factor 1 to n, even if
there is only one factor. The independence examples are numbered from 0 to n. In each
case example 0 satisfies all specified conditions, and each of the examples 1 to n satisfies all
specified conditions except the corresponding factor. The examples given in LEŚNIEWSKI31
usually contain as well some commentary explaining why the corresponding condition is not
fulfilled. In the present work we shall simply assume that the reader understands why the
condition is not fulfilled.

5.3. Presuppositions

In 1929 Leśniewski published a series of comments which are intended to prevent any-
one who reads his terminological explanations from misunderstanding the terms introduced
in the last section30. We shall now repeat and expand those remarks.

[
A] The particular quantifier is not ‘existential’ because the variables it contains can
be replaced in legitimate substitutions by ‘empty’ names. Thus from ‘Pegasus
does not exist’ we can infer ‘For some A – A does not exist’31.

A ε b The expression ‘A is b’ is true whenever the following conditions are fulfilled:

(1) At least one object is A.

(2) At most one object is A.

(3) Any object which is A is b.

27 LEŚNIEWSKI31, p. 293; cf. LEŚNIEWSKI31A, p. 151, and LEJEWSKI89, p. 481.
28 LEŚNIEWSKI31, p. 306.
29 Examples of this (using single instead of double quotation marks) appear in LEJEWSKI89;

e.g., p. 488.
30 LEŚNIEWSKI29, pp. 61–2.
31 Cf. LEJEWSKI55A, p. 106.
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Id Any object A is the same object as B whenever both A is B and B is A. Note
that two equiform objects in different places are not the same object.� There are as many a as b, among other cases, when there are no a and no b. This
term can be introduced into Leśniewski’s ontology by means of the definition32

[ab]�[
φ]�[A]�A ε a��[
B]�B ε b�B ε φ@AT�[A]�A ε b��[
B]�B ε a�A
ε φ@BT�[ABC]�A ε a�B ε a�C ε b�C ε φ@AT�C ε φ@BT��A ε B�
[ABC]�A ε a�B ε b�C ε b�B ε φ@AT�C ε φ@AT��B ε C���a �
b

but this definition is not acceptable in the metalanguage because it contains a
variable functor.� There are fewer a than b, among other cases, when there are no a and there
is at least one b. This term can be introduced into ontology by means of the
definition33

[ab]�[
c]�[A]�A ε c��A ε b�a � c�[c]�[A]�A ε c��A ε a���@c �
bT���a � b

in This term can be taken as the primitive term of mereology. Among its properties
are these:

(1) If any object is in A, then A is an object.

(2) If any object B is in C, then any object which is in B is in C.

(3) If any object A is in B, and B is in A, then A is the same object as B.

(4) Any object A is in A.

Ccl This term is used in mereology. Among its properties are

(1) If any object is a, then it is in the complete collection of a.

(2) There is at most one complete collection of a.

(3) If any object A is in the complete collection of b, then some object which
is in A is in some object which is b.

Complete collections ordinarily appear in the metalanguage only to refer to ob-
jects which consist of words but which are not expressions.

vrb ‘Man’, ‘word’, ‘p’, ‘&’, and ‘T’ are examples of words. The expressions ‘the man’,
‘@pT’, and ‘f&@word’ are not words, but are expressions consisting of two, three,
and four words respectively. Axiom C1 consists of five words. Axiom Ao consists
of fifty-four words. Letters, dots, marks, or indices which are parts of words are
not words.

expr Every word is an expression. The complete collection of a finite number of
successive words from any expression is an expression. The complete collection

32 Cf. LEŚNIEWSKI29A, p. 98.
33 Ibid.
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consisting of the first, third, and fourth words of some expression is not an
expression. If there were a complete collection consisting of an infinite number
of words, it would not be an expression.

prnt The words ‘@’, ‘B’, ‘[’, and ‘{’ are all both parentheses and left parentheses (prnt1).

The words ‘T’, ‘]’, and ‘}’ are examples of parentheses which are not left paren-
theses. The words ‘&’ and ‘)’ are examples of words which are not parentheses.

prntsym Each of the words ‘@’, ‘B’, and ‘C’ is a parenthesis symmetrical with each of the

words ‘T’, ‘V’, and ‘W’, and conversely. Each of the words ‘}’, ‘
}
’, and ‘

}
’ is a

parenthesis symmetrical with each of the words ‘{’, ‘
{
’, and ‘

{
’, and conversely.

None of the words ‘@’, ‘]’, ‘T
1

’, and ‘}’ is a parenthesis symmetrical with the word

‘@’.
cnf Every expression is an expression equiform with itself. The first word of C1 is

an expression equiform with the first word of C2. The expression called Samp in
the next chapter is an expression equiform with thesis C26. The word ‘3’ is not
equiform with ‘3

1

’; Leśniewski allows two different constants with the same ‘truth

conditions’ to share a basic outline. The parenthesis ‘@’ is an expression equiform

with the parenthesis ‘B’, because parentheses are allowed to vary in size for the

sake of perspicuity. The parenthesis ‘@’ is not an expression equiform with the

parenthesis ‘[’. The word ‘(’ is an expression equiform with the word ‘(’, because
the quantifier scope indicators ‘(’ and ‘) ’ are allowed to vary in height for the
sake of perspicuity. Note that equiform expressions in different places are not
the same expression. Failure to appreciate this will distort the terminological
explanations and the resulting directives.

“. . .” Double quotation marks are an admittedly awkward device for constructing a
name for arbitrary expressions. Note that, while names such as ‘C1 ’ and ‘Samp
’ are proper names, which denote only one object, double quotation marks form
common names, which denote all objects equiform with their argument.

thp The system grows in the course of time. At first only the axiom C1 is a thesis
of this system of protothetic, then, one by one, theses C2, C3, C4, and so on,
become theses of this system.

prcd Leśniewski uses this term in such a way that the words in any expression are
ordered in such a way that transitivity and trichotomy obtain. Moreover the
theses in the system are ordered similarly, with axiom C1 preceding any other
thesis, and with every thesis following any theses which belonged to the system
already at the time when it was added. One of two expressions precedes another
whenever every word in the first expression precedes every word in the second ex-
pression. The independence of certain conditions, for example of E32.1, requires
that words in one thesis should precede any later thesis, but the explanations, at
least when applied successfully, require only that theses precede theses, and that
some expressions within a given expression precede others.



6. The Directives of Computative Protothetic

In this chapter we shall actually state the directives of compututative protothetic after giv-
ing a large number of terminological explanations. Each explanation has the form of an
equivalence much like a definition in one of Leśniewski’s systems, except that the definiens
is the right-hand argument of the equivalence, while the definiendum is the left-hand argu-
ment.

When the definiens consists of the conjunction of several conditions, they are printed
so that their first characters are aligned1. Each condition is numbered, even if there is only
one. After each explanation there are a number of examples. The number of each example
is the number of the condition which it does not fulfil; it fulfils all other conditions. Each
example numbered 0 fulfils all conditions specified in the explanation.

6.1. Standard directives

This section contains the terminological explanations which are essentially identical
with those for system �5. They define the fundamental terms used to define meaningful
expressions: ‘tmp’, ‘qntf’, ‘gnrl’, ‘fnct’, and ‘arg’. Explanations E1–E4 and many examples
refer to the following sample expression, which in fact is equiform with thesis C26 :

Samp 3@&u'(u)ΛT
Explanations E28–E31 and E45 refer to the axiom C1 of the system of computative proto-
thetic whose directives we are preparing to state.

E1 [A]�A ε vrb12���1A ε cnfA3ingr@SampTU
E1.0 3ingr@SampT ε vrb1

E1.1 5ingr@SampT ε �@vrb1T
E2 [A]�A ε vrb2���1A ε cnfA5ingr@SampTU

E2.0 5ingr@SampT ε vrb2

E2.1 6ingr@SampT ε �@vrb2T
E3 [A]�A ε vrb3���1A ε cnfA6ingr@SampTU

E3.0 6ingr@SampT ε vrb3

E3.1 3ingr@SampT ε �@vrb3T
E4 [A]�A ε vrb4���1A ε cnfA8ingr@SampTU

E4.0 8ingr@SampT ε vrb4

1 This conforms with Leśniewski’s practice in LEŚNIEWSKI29 and in LEŚNIEWSKI30.
2 A is a special word of the first kind.

63
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E4.1 4ingr@SampT ε �@vrb4T
E5 [A]�A ε trm3���1A ε vrb�

2A ε �@prntT�
3A ε �@vrb1T�
4A ε �@vrb2T�
5A ε �@vrb3T�
6A ε �@vrb4T

E5.0 4ingr@SampT ε trm

E5.1 Samp ε �@trmT
E5.2 2ingr@SampT ε �@trmT
E5.3 3ingr@SampT ε �@trmT
E5.4 5ingr@SampT ε �@trmT
E5.5 6ingr@SampT ε �@trmT
E5.6 8ingr@SampT ε �@trmT

E6 [AB]�A ε int@BT4���1B ε expr�
2A ε vrb�
3A ε in@BT�
4A ε �A1ingr@BTU�
5A ε �AUingr@BTU

E6.0 2ingr@SampT ε int@SampT
E6.1 7ingr@SampT ε �CintBCclAtrm � in@SampTUVW
E6.2 Samp ε �Aint@SampTU
E6.3 1ingr@SampT ε �Aint@C1TU
E6.4 1ingr@SampT ε �Aint@SampTU
E6.5 Uingr@SampT ε �Aint@SampTU
The term defined in the following explanation allows us to analyse an expression into

a collection of discrete, successive expressions.

3 A is a term.
4 A is a word in the interior of B.
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E7 [Aa]�A ε Cmpl@aT5���1 A ε expr�
2[B]�B ε vrb�B ε in@AT��[
C]�C ε a�B ε in@CT�
3[BCD]�B ε a�C ε a�D ε vrb�D ε in@BT�D ε in@CT��B ε

Id@CT�
4[B]�B ε a��B ε expr � in@AT

E7.0 Samp ε CmplAvrb � in@SampTU
E7.1 CclAtrm � in@SampTU ε �BCmplAtrm � in@SampTUV
E7.2 Samp ε �BCmplAtrm � in@SampTUV
E7.3 Samp ε �BCmplAexpr � in@SampTUV
E7.4 1ingr@SampT ε �BCmplAvrb � in@SampTUV

E8 [A]�A ε qntf6���1 1ingr@AT ε vrb1�
2Uingr@AT ε vrb2�
3[
B]�B ε int@AT�
4[B]�B ε int@AT��B ε trm�
5[BC]�B ε int@AT�C ε int@AT�B ε cnf@CT��B ε Id@CT

E8.0 CmplA3ingr@SampT � 4ingr@SampT � 5ingr@SampTU ε qntf

E8.1 [A]�A ε “pq'”��A ε �@qntfT
E8.2 [A]�A ε “&pq”��A ε �@qntfT
E8.3 [A]�A ε “& '”��A ε �@qntfT
E8.4 [A]�A ε “&@'”��A ε �@qntfT
E8.5 [A]�A ε “&pp'”��A ε �@qntfT

E9 [A]�A ε sbqntf7���1[
B]�B ε int@AT�
2[B]�B ε 1ingr@AT���B ε int@AT��Avrb3 � in@AT � scd@BTU� Avrb4 � in@AT � scd@BTU�
3[B]�B ε int@AT���B ε Uingr@AT��Avrb4 � in@AT � prcd@BTU� Avrb3 � in@AT � prcd@BTU�

5 A is the complex of a.
6 A is a quantifier.
7 A is a subquantifier.
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E9.0 CmplA6ingr@SampT � 7ingr@SampT � 8ingr@SampTU ε sbqntf

E9.1 [A]�A ε “( )”��A ε �@sbqntfT
E9.2 [A]�A ε “(pq”��A ε �@sbqntfT
E9.3 [A]�A ε “pq)”��A ε �@sbqntfT

E10 [A]�A ε gnrl8���1[
B]�B ε qntf�B ε in@AT�1ingr@AT ε in@BT�
2[
B]�B ε sbqntf�B ε in@AT�Uingr@AT ε in@BT�
3[BC]�B ε qntf�B ε in@AT�1ingr@AT ε in@BT�C ε sbqntf�C ε in@AT�Uingr@AT ε in@CT��A ε Cmpl@B � CT

E10.0 CmplBvrb � in@SampT � scdA2ingr@SampTU � prcdA9ingr@SampTUV ε gnrl

E10.1 CmplBvrb � in@SampT � scdA3ingr@SampTU � prcdA9ingr@SampTUV ε �@gnrlT
E10.2 CmplBvrb � in@SampT � scdA2ingr@SampTU � prcdA8ingr@SampTUV ε �@gnrlT
E10.3 [A]�A ε “&u'u(u)”��A ε �@gnrlT
Note that the above explanation of a generalisation, when compared with the infor-

mal account in section 2.2, is both more restrictive (since it forbids repeating terms in a
quantifier) and less restrictive (since it does not yet restrict quantified expressions to terms
and functions).

E11 [AB]�A ε Qntf@BT9���1B ε gnrl�
2A ε qntf � in@BT�
31ingr@BT ε in@AT

E11.0 CmplBvrb � in@SampT � scdA2ingr@SampTU � prcdA6ingr@SampTUV ε QntfC
CmplBvrb � in@SampT � scdA2ingr@SampTU � prcdA9ingr@SampTUVW

E11.1 CmplBvrb � in@SampT � scdA2ingr@SampTU � prcdA6ingr@SampTUV ε �DQntfCCmplBvrb � in@SampT � scdA2ingr@SampTUVWX
E11.2 3ingr@SampT ε �DQntfCCmplBvrb � in@SampT � scdA2ingr@SampTU � prcdA

9ingr@SampTUVWX
8 A is a generalisation.
9 A is the quantifier of B.
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E11.3 [A]�A ε “&f '(f @&u'(u)T)”��CmplBvrb � in@AT � scdA6ingr@ATU � prcdA
10ingr@ATUV ε �AQntf@ATU

E12 [AB]�A ε Sbqntf@BT10���1B ε gnrl�
2A ε sbqntf�
3A ε in@BT�
4Uingr@BT ε in@AT

E12.0 CmplBvrb � in@SampT � scdA5ingr@SampTU � prcdA9ingr@SampTUV ε SbqntfC
CmplBvrb � in@SampT � scdA2ingr@SampTU � prcdA9ingr@SampTUVW

E12.1 CmplBvrb � in@SampT � scdA5ingr@SampTU � prcdA9ingr@SampTUV ε �D
SbqntfCCmplBvrb � in@SampT � prcdA9ingr@SampTUVWX

E12.2 8ingr@SampT ε �DSbqntfCCmplBvrb � in@SampT � scdA2ingr@SampTU � prcdA9ingr@SampTUVWX
E12.3 [A]�A ε “&f '(f@&u'(u)T)”��CmplBvrb � in@AT � scdA3ingr@ATUV ε�DSbqntfCCmplBvrb � in@AT � scdA6ingr@ATU � prcdA13ingr@ATUVWX
E12.4 [A]�A ε “&f '(f @&u'(u)T)”��CmplBvrb � in@AT � scdA9ingr@ATU � prcdA

13ingr@ATUV ε �ASbqntf@ATU
The following explanation of the ‘essential part’ or ‘nucleus’ of an expression allows

us to refer conveniently to expressions which may or may not be generalisations.

E13 [AB]�A ε Essnt@BT���1A ε CmplBintASbqntf@BTUV���A ε expr�A ε Id@BT�A ε �@
gnrlT
E13.0 7ingr@SampT ε EssntCCmplBvrb � in@SampT � scdA2ingr@SampTU � prcdA

9ingr@SampTUVW
10 A is the subquantifier of B.
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E13.1 CmplBvrb � in@SampT � scdA2ingr@SampTU � prcdA9ingr@SampTUV ε�DEssntCCmplBvrb � in@SampT � scdA2ingr@SampTU � prcdA9ingr@SampTUVWX
E14 [ABC]�A ε var@B,CT11���1B ε intAQntf@CTU�

2A ε cnf@BT�
3A ε inAEssnt@CTU�
4[DE]�D ε in@CT�E ε intAQntf@DTU�A ε cnf@ET��D ε

Id@CT
E14.0 7ingr@SampT ε varC4ingr@SampT,CmplBvrb � in@SampT � scdA2ingr@SampTU� prcdA9ingr@SampTUVW
E14.1 1ingr@SampT ε �BvarA1ingr@SampT, 1ingr@SampTUV
E14.2 [A]�A ε “&p'(3@ppT)”��5ingr@AT ε �BvarA2ingr@AT, AUV
E14.3 4ingr@SampT ε �DvarC4ingr@SampT,CmplBvrb � in@SampT � scdA2ingr@SampTU � prcdA9ingr@SampTUVWX
E14.4 [A]�A ε “&f '(f@&f '(f )T)”��11ingr@AT ε �BvarA2ingr@AT, AUV
The above explanation refers to a variable bound by term B in generalisation C. The

following explanation refers to two ‘co-variables’, which are related to each other by being
bound by the same term in the same quantifier.

E15 [ABC]�A ε cnvar@B,CT12���1[
D]�A ε var@D,C)�
2[
D]�B ε var@D,CT�
3A ε cnf@BT

E15.0 7ingr@SampT ε cnvarC7ingr@SampT,CmplBvrb � in@SampT � scdA2ingr@SampTU � prcdA9ingr@SampTUVW
11 A is a variable bound by B in C.
12 A is a variable related to B in C.
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E15.1 4ingr@SampT ε �DcnvarC7ingr@SampT,CmplBvrb � in@SampT � scdA2ingr@
SampTU � prcdA9ingr@SampTUVWX

E15.2 7ingr@SampT ε �DcnvarC4ingr@SampT,CmplBvrb � in@SampT � scdA2ingr@
SampTU � prcdA9ingr@SampTUVWX

E15.3 [A]�A ε “&pq'(3@pqT)”��8ingr@AT ε �BcnvarA9ingr@AT, AUV
E16 [A]�A ε prntm13���1[
B]�B ε int@AT�

2[B]�B ε 1ingr@AT���B ε int@AT��Bin@AT � scd@BT � cnfA
1ingr@ATUV � Bin@AT � scd@BT � prntsymA1ingr@ATUV�

3[B]�B ε int@AT���B ε Uingr@AT��Bin@AT � prcd@BT �
prntsymA1ingr@ATUV � Bin@AT � prcd@BT � prnt1 � cnfA1ingr@ATUV
E16.0 CmplBvrb � in@SampT � scdA1ingr@SampTUV ε prntm

E16.1 [A]�A ε “@T”��A ε �@prntmT
E16.2 CmplAint@SampTU ε �@prntmT
E16.2 [A]�A ε “@TU”��A ε �@prntmT
Note that the explanation of a bracketed expression, when compared with the informal

account in section 2.2, is both more restrictive (since the initial and terminal parentheses
must be of the same kind) and less restrictive (since it does not yet specify what kinds of
expression are permitted between the parentheses).

E17 [ABa]�A ε prntm@B, aT14���1 [C]�C ε a��C ε prntm�
2B ε CmplA1ingr@BT � aU�
31ingr@BT ε trm�
4A ε a

E17.0 CmplBvrb � in@SampT � scdA1ingr@SampTUV ε prntmASamp,prntm � in@SampTU
13 A is a bracketed expression.
14 A is a bracketed expression in B by means of a.
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E17.1 1ingr@SampT ε �BprntmASamp,vrb � in@SampTUV
E17.2 CmplBvrb � in@SampT � scdA1ingr@SampTUV ε �Aprntm@Samp,prntmTU
E17.3 [A]�A ε “T@pT”��CmplBvrb � in@AT � scdA1ingr@ATUV ε �BprntmAA,prntm� in@ATUV
E17.4 Samp ε �BprntmASamp,prntm � in@SampTUV

E18 [AB]�A ε prntm@BT���1[
a]�A ε prntm@B, aT
E18.0 CmplBvrb � in@SampT � scdA1ingr@SampTUV ε prntm@SampT
E18.1 Samp ε �Aprntm@SampTU

E19 [A]�A ε fnct15���1[
B]�B ε prntm@AT
E19.0 Samp ε fnct

E19.1 CmplBvrb � in@SampT � scdA1ingr@SampTUV ε �@fnctT
The above explanation of a function, when compared with the informal account in

section 2.2, is both more restrictive (since it places further conditions on parentheses) and
less restrictive (since it does not yet require that a function have sensible arguments).

E20 [ABa]�A ε arg@B, aT16���1B ε prntm�
2[C]�C ε a��C ε trm���C ε gnrl���C ε fnct�
3CmplAint@BTU ε Cmpl@aT�
4A ε a

E20.0 9ingr@SampT ε argCCmplBvrb � in@SampT � scdA1ingr@SampTUV, 9ingr@SampT� Agnrl � in@SampTUW
E20.1 4ingr@SampT ε �DargCCmplBvrb � in@SampT � scdA2ingr@SampTU � prcdA

6ingr@SampTUV, 4ingr@SampTWX
E20.2 9ingr@SampT ε �DargCCmplBvrb � in@SampT � scdA1ingr@SampTUV,vrb �

in@SampT � scdA2ingr@SampTU � prcdAUingr@SampTUWX
15 A is a function.
16 A is an argument of B by means of a.
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E20.3 9ingr@SampT ε �DargCCmplBvrb � in@SampT � scdA1ingr@SampTUV,trmWX
E20.4 Samp ε �DargCCmplBvrb � in@SampT � scdA1ingr@SampTUV, 9ingr@SampT �Agnrl � in@SampTUWX

E21 [AB]�A ε arg@BT���1[
a]�A ε arg@B, aT
E21.0 9ingr@SampT ε argCCmplBvrb � in@SampT � �A1ingr@SampTUW
E21.1 7ingr@SampT ε �DargCCmplBvrb � in@SampT � scdA1ingr@SampTUVWX
The following explanation effectively defines the functor of a function as that part of

the function which precedes the final bracketed expression.

E22 [AB]�A ε Sgnfnct@BT17���1A ε expr�
2A ε in@BT�
3CmplBvrb � in@BT � �Ain@ATUV ε prntm@BT

E22.0 1ingr@SampT ε Sgnfnct@SampT
E22.1 [A]�A ε “3@

1

pT
1

@qT”18��CclC1ingr@AT � Bvrb � in@AT � scdA4ingr@ATUVW ε�ASgnfnct@ATU
E22.2 [A]�A ε “p3@pqT”��CmplA1ingr@AT � 2ingr@ATU ε �DSgnfnctCCmplBvrb �

in@AT � scdA1ingr@ATUVWX
E22.3 Uingr@SampT ε �ASgnfnct@SampTU

E23 [AB]�A ε simprntm@BT19���1A ε prntm�
2B ε prntm�
31ingr@AT ε cnfA1ingr@BTU�
4arg@AT � arg@BT

17 A is the functor of B.
18 This is an example of a ‘many-link’ or ‘multi-link’ function, in which one function serves as

the functor of another function.
19 A is a bracketed expression similar to B.
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E23.0 CmplBvrb � in@SampT � scdA1ingr@SampTUV ε simprntmCCmplBvrb � in@C1T� scdA1ingr@C1TUVW
E23.1 [AB]�A ε “@pq”�B ε “@&T”��A ε �Asimprntm@BTU
E23.2 [AB]�A ε “@&T”�B ε “@pq”��A ε �Asimprntm@BTU
E23.3 [AB]�A ε “@pT”�B ε “{p}”��A ε �Asimprntm@BTU
E23.4 [AB]�A ε “@pT”�B ε “@ppT”��A ε �Asimprntm@BTU

E24 [AB]�A ε genfnct@BT20���1A ε fnct�
2prntm@AT � prntm@BT���prntm@AT � prntm@BT�
3[CD]�C ε prntm@AT�D ε prntm@BT�Aprntm@AT � scd@

CTU � Aprntm@BT � scd@DTU��C ε simprntm@DT
E24.0 [A]�A ε “φ@

2

pT
2

@qrT”��Samp ε genfnct@AT
E24.1 9ingr@SampT ε �BgenfnctA9ingr@SampTUV
E24.2 Samp ε �BgenfnctA9ingr@SampTUV
E24.3 [A]�A ε “-@pT”��A ε �Agenfnct@SampTU

E25 [ABCD]�A ε Anarg@B,C,DT21���1C ε simprntm@DT�
2A ε arg@CT�
3B ε arg@DT�
4Aarg@CT � prcd@ATU � Aarg@DT � prcd@BTU

E25.0 4ingr@C1T ε AnargC9ingr@SampT,CmplBvrb � in@C1T � scdA1ingr@C1TUV,CmplBvrb � in@SampT � scdA1ingr@SampTUVW
E25.1 [A]�A ε “@pT”��2ingr@AT ε �DAnargC3ingr@C1T, A,CmplBvrb � in@C1T �

scdA1ingr@C1TUVWX
20 A is a function modelled after B.
21 A is the argument corresponding to B in C and D respectively.
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E25.2 [A]�A ε “@pqT”��3ingr@SampT ε �DAnargC2ingr@AT,Cmpl@vrb � in@SampT� scdA1ingr@SampTUV, AWX
E25.3 [A]�A ε “@pqT”��2ingr@AT ε�DAnargC3ingr@SampT, A,CmplBvrb � in@SampT � scdA1ingr@SampTUVWX
E25.4 3ingr@C1T ε �DAnargC9ingr@SampT,CmplBvrb � in@C1T � scdA1ingr@C1TUV,

CmplBvrb � in@SampT � scdA1ingr@SampTUVWX
E26 [ABCD]�A ε Ansgnfnct@B,C,DT22���1A ε Sgnfnct@CT�

2B ε Sgnfnct@DT�
3[
EF ]�E ε prntm@CT�E ε scd@AT�F ε prntm@DT�F ε scd@BT�E ε simprntm@F T

E26.0 1ingr@SampT ε AnsgnfnctA1ingr@C1T,Samp,C1U
E26.1 [A]�A ε “3@

2

pT
2

@qrT”��1ingr@AT ε �BAnsgnfnctA1ingr@C1T, A,C1UV
E26.2 [A]�A ε “3@

2

pT
2

@qrT”��1ingr@C1T ε �BAnsgnfnctA1ingr@AT,C1, AUV
E26.3 [A]�A ε “-@pT”��1ingr@AT ε �BAnsgnfnctA1ingr@C1T, A,C1UV

E27 [ABCD]�A ε An@B,C,DT23���1A ε Anarg(B,C,D)���A ε Ansgnfnct@B,C,DT
E27.0 1ingr@C1T ε AnA1ingr@SampT,C1,SampU
E27.1 1ingr@C1T ε �BAnA4ingr@C1T,C1,C1UV

E28 [AB]�A ε Arg1@BT24���1[
C]�C ε in@C1T�A ε AnargA3ingr@C1T, B, CU
E28.0 [A]�A ε “@pqT”��2ingr@AT ε Arg1@AT
E28.1 3ingr@C1T ε �AArg1@C1TU

E29 [AB]�A ε Arg2@BT25���1[
C]�C ε in@C1T�A ε AnargA4ingr@C1T, B, CU
22 A is the functor analogous to B in C and D respectively.
23 A is the component corresponding to B in C and D respectively.
24 A is the first of two propositional arguments of B.
25 A is the second of two propositional arguments of B.
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E29.0 [A]�A ε “@pqT”��3ingr@AT ε Arg2@AT
E29.1 3ingr@C1T ε �DArg2CCmplBvrb � in@C1T � scdA1ingr@C1TUVWX

E30 [AB]�A ε Eqvl1@BT26���1Sgnfnct@BT ε cnfA1ingr@C1TU�
2[
C]�C ε prntm@BT�A ε Arg1@CT

E30.0 3ingr@C1T ε Eqvl1@C1T
E30.1 [A]�A ε “7@ppT”��3ingr@AT ε �AEqvl1@ATU
E30.2 [A]�A ε “3@pT”��3ingr@AT ε �AEqvl1@ATU

E31 [AB]�A ε Eqvl2@BT27���1Sgnfnct@BT ε cnfA1ingr@C1TU�
2[
C]�C ε prntm@BT�A ε Arg2@CT

E31.0 4ingr@C1T ε Eqvl2@C1T
E31.1 [A]�A ε “7@ppT”��4ingr@AT ε �AEqvl2@ATU
E31.2 3ingr@C1T ε �AEqvl2@C1TU
Most of the remaining explanations define terms which describe different objects as

the system develops in the course of time. For example, a new definition extends the concept
of ‘meaningful expression’, in the sense that expressions containing the new term are not
meaningful before the definition is added to the system, but some of them are meaningful
afterwards. All terms defined in this way end with the suffix ‘p’, which indicates that an
object is or is not a such-and-such relative to some thesis of protothetic, which is specified
by one of the arguments of the defined function. The analogous terms defined for stating
the directives of ontology and mereology end with the suffixes ‘o’ and ‘m’ respectively28.

E32 [AB]�A ε thp@BT29���1A ε thp�
2B ε thp�
3A ε prcd@BT���A ε Id@BT

E32.0 C1 ε thp@C1T
E32.1 1ingr@C1T ε �Athp@C2TU
E32.2 C1 ε �BthpA1ingr@C2TUV

26 A is the first argument of the equivalence B.
27 A is the second argument of the equivalence B.
28 LEŚNIEWSKI29, pp. 68–9.
29 A is a thesis of this system of protothetic relative to B.
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E32.3 C2 ε �Athp@C1TU
E33 [AB]�A ε frp@BT30���1A ε thp@BT���[
CD]�C ε thp@BT�D ε in@CT�A ε Arg1@DT���[
CD]�C ε thp@BT�D ε in@CT�A ε Arg2@DT���[
CD]�C ε thp@BT�D ε sbqntf�D ε

in@CT�A ε CmplAint@DTU
E33.0 4ingr@C1T ε frp@C1T
E33.1 Samp ε �Afrp@C1TU

E34 [ABC]�A ε 1homosemp@B,CT31���1A ε frp@CT�B ε frp@CT���[
DE]�D ε thp@CT�E
ε in@DT�A ε cnvar@B,ET���[
DEFG]�D ε thp@CT�E ε in@DT�F ε thp@CT�G ε in@F T�A
ε An@B,E,GT
E34.0 3ingr@C1T ε 1homosempA4ingr@C1T,C1U
E34.1 1ingr@C1T ε �B1homosempA4ingr@C1T,C1UV
The previous explanation covers those situations in which we can determine directly

that two expressions belong to the same semantic category relative to some thesis. The
following explanation, loosely speaking, says that the semantic category of an expression
consists of all those expressions which belong to any domain which contains B and which
is closed with respect to direct determination of belonging to the same semantic category.
In this explanation there are two logically superfluous clauses: ‘A ε 1homosemp@A,CT’,
and ‘[D]�D ε a��D ε 1homosemp@D,CT’. The former clause simply emphasises that
expressions which satisfy the following explanation also satisfy the previous one, while the
other clause assures us that we can restrict our search to expressions in theses which are
thp@CT.
E35 [ABC]�A ε homosemp@B,CT32���1A ε 1homosemp@A,CT�B ε 1homosemp@B,CT�

2[a]�[D]�D ε a��D ε 1homosemp@D,CT�[DE]�D ε a�E ε 1homosemp@D,CT��E ε a�B ε a��A ε a

E35.0 3ingr@C1T ε homosemp@C1,C1T
E35.1 C1 ε �BhomosempA2ingr@C1T,C1UV
E35.2 C1 ε �BhomosempA1ingr@C1T,C1UV
The following explanation describes a term A in an expression C which, relative to

a thesis B, plays a suitable rôle as a constant. It does so because it is equiform with
a constant D in some thesis relative to B, and because it is the ‘structural analogue’ of
some expression E in the same semantic category as D. To prove that requirement 1 is

30 A is an evident sentence relative to B.
31 A is an expression which by direct evidence belongs to the same semantic category as B,

relative to C.
32 A is an expression belonging to the same semantic category as B relative to C.
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independent of the other conditions, we must assume that the system of protothetic contains
two equiform constants in different semantic categories, which is perfectly in accordance with
the directives, but which we have in fact chosen not to do in our system C.

E36 [ABCDE]�A ε constp@B,C,D,ET33���1D ε homosemp@E,BT�
2[FG]�G ε thp@BT�F ε in@GT��D ε �A

cnvar@D,F TU�
3A ε cnf@DT�
4[
FGH]�F ε in@CT�G ε thp@BT�H ε in@GT�A ε An@E,F,HT

E36.0 1ingr@SampT ε constpAC1,Samp, 1ingr@C1T, 1ingr@C1TU
E36.1 [A]�A ε thp34�A ε “3A3@ΛΛT3U”��1ingr@SampT ε �BconstpAA,Samp, 8ingr@

AT, 1ingr@ATUV
E36.2 [A]�A ε “3@ppT”��3ingr@AT ε �BconstpAC25, A, 11ingr@C25T, 3ingr@C1TUV
E36.3 [A]�A ε “7@ΛΛT”��1ingr@AT ε �BconstpAC1, A, 1ingr@C1T, 1ingr@C1TUV
E36.4 3ingr@C1T ε �BconstpAC1,C1, 3ingr@C1T, 4ingr@C1TUV

E37 [ABC]�A ε constp@B,CT���1[
DE]�A ε constp@B,C,D,ET
E37.0 1ingr@SampT ε constp@C1,SampT
E37.1 [A]�A ε “Λ@33T”��1ingr@AT ε �Aconstp@C1, ATU
The following explanation describes two expressions A and B in a larger expression

D; A and B are able to belong to the same semantic category because of their respective
analogues E and F , which do belong to the same semantic category relative to thesis C.

E38 [ABCDEF ]�A ε quasihomosemp@B,C,D,E, F T35���1E ε homosemp@F,CT�
2[
GHI]�G ε in@DT�H ε thp@

CT�I ε in@HT�A ε An@E,G, I)�
3[
GHI]�G ε in@DT�H ε thp@

CT�I ε in@HT�B ε An@F,G, I)
33 A is suited to be a constant, relative to B, in C, by means of D and E.
34 This example assumes that thesis A has been added to system C immediately after thesis

C4, and instead of C5. In this, as in all examples of possible theses below, there is a legitimate way
either to extend system C to include the proposed thesis, or to construct an alternative system
which includes it.

35 A is suited to belong to the same semantic category as B, relative to C, in D, by means of
E and F .
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E38.0 [A]�A ε “&p'(3@ppT)”��7ingr@AT ε quasihomosempA8ingr@AT,C1, A, 3ingr@C1T,4ingr@C1TU
E38.1 [A]�A ε “&p'(3@ppT)”��7ingr@AT ε �BquasihomosempA5ingr@AT,C1, A, 3ingr@C1T, 1ingr@C1TUV
E38.2 [A]�A ε “&p'(3@ppT)”��7ingr@AT ε �BquasihomosempA8ingr@AT,C1, A, 4ingr@C1T, 4ingr@C1TUV
E38.3 [A]�A ε “&p'(3@ppT)”��7ingr@AT ε �BquasihomosempA8ingr@AT,C1, A, 3ingr@C1T, 3ingr@C1TUV
The following explanation says that a function A in expression C is suited to be an

argument or functor in another function in C, relative to thesis B.

E39 [ABCDE]�A ε fnctp@B,C,D,ET36���1D ε homosemp@E,BT�
2A ε genfnct@DT�
3[
FGH]�F ε in@CT�G ε thp@BT�H ε in@GT�A

ε An@E,F,HT
E39.0 [A]�A ε “&pq'(3A3@pqT3@qpTU)”��Eqvl2AEssnt@ATT ε fnctpAC1, A,C1, 4ingr@

C1TU
E39.1 [A]�A ε “3@ppT@ppT”��Sgnfnct@AT ε �BfnctpAC1, A,C1, 1ingr@C1TUV
E39.2 [A]�A ε “3Ap3@pTU”��Eqvl2@AT ε �BfnctpAC1, A,C1, 4ingr@C1TUV
E39.3 [A]�A ε “3Ap3@ppTpU”��CmplBvrb � in@AT � scdA3ingr@ATU � prcdA9ingr@ATUV ε �BfnctpAC1, A,C1, 4ingr@C1TUV
The following explanations describe conditions which are useful for describing the

bracketed expressions which follow the defined terms in definitions.

E40 [ABCDEF ]�A ε varp@B,C,D,E, F T���1E ε homosemp@B,CT�
2[
GHI]�G ε in@DT�H ε thp@CT�I ε in@HT�F ε An@E,G, IT�
3F ε inBEqvl1AEssnt@DTUV�
4A ε cnvar@F,DT

36 A is a function in an appropriate context relative to B, in C, by means of D and E.
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E40.0 10ingr@C29T ε varpA3ingr@C1T,C1,C29, 3ingr@C1T, 7ingr@C29TU
E40.1 10ingr@C29T ε �BvarpA1ingr@C1T,C1,C29, 3ingr@C1T, 7ingr@C29TUV
E40.2 10ingr@C29T ε �BvarpA3ingr@C1T,C1,C29, 4ingr@C1T, 7ingr@C29TUV
E40.3 4ingrBEqvl2AEssnt@C95TUV ε �DvarpC4ingr@C1T,C1,C95, 4ingr@C1T, 4ingrB

Eqvl2AEssnt@C95TUVWX
E40.4 4ingrBEqvl2AEssnt@C95TUV ε �DvarpC4ingr@C1T,C1,C95, 4ingr@C1T,Eqvl2B

Eqvl1AEssnt@C95TUVWX
E41 [ABCDE]�A ε prntmp@B,C,D,ET���1D ε homosemp@B,BT�

2E ε prntm@DT�
3A ε prntmBEqvl2AEssnt@CTUV�
4arg@AT � arg@ET�
5[FG]�F ε arg@AT�G ε arg@ET�Aarg@AT �

prcd@F TT � Aarg@ET � prcd@GTU��[
HI]�F ε varp@G,B,C,H, IT
E41.0 CmplCprntmBEqvl2AEssnt@C43TUVW ε prntmpDC29,C43,Eqvl2AEssnt@C29TU,

CmplCprntmBEqvl2AEssnt@C29TUVWX
E41.1 [AB]�A ε thp37�A ε “&pqr'(3B3A3@pqTrU3@

1

pqT
1

@rTV)”�B ε “&pq'(3A3@pqTφ@pqTU)”��CmplCprntmBEqvl2AEssnt@BTUVW ε �FprntmpEA,B,SgnfnctBEqvl2A
Essnt@ATUV,CmplDprntmCSgnfnctBEqvl2AEssnt@ATUVWXYZ

E41.2 CmplCprntmBEqvl2AEssnt@C43TUVW ε �EprntmpDC29,C43,C1,CmplCprntmB
Eqvl2AEssnt@C29TUVWXY

37 This example assumes that thesis A has been added to system C immediately after thesis
C99.
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E41.3 CmplCprntmBEqvl1AEssnt@C43TUVW ε�CprntmpBC1,C43,C1,CmplAprntm@C1TUVW
E41.4 CmplCprntmBEqvl2AEssnt@C43TUVW ε�CprntmpBC1,C43,C1,CmplAprntm@C1TUVW
E41.5 [A]�A ε “&fg'(3B&p'(3Af@pTg@pTU)3<fg>V)”��CmplCprntmBEqvl2AEssnt@ATUVW ε �CprntmpBC1, A,C1,CmplAprntm@C1TUVW

E42 [ABCDE]�A ε 1prntmp@B,C,D,ET���1A ε prntmp@B,C,D,ET�
2Uingr@DT ε in@ET

E42.0 CmplCprntmBEqvl2AEssnt@C43TUVW ε 1prntmpDC29,C43,Eqvl2AEssnt@C29TU,
CmplCprntmBEqvl2AEssnt@C29TUVWX

E42.1 CmplCprntmBEqvl2AEssnt@C43TUVW ε �C1prntmpBC1,C43,C1,CmplAprntm@
C1TUVW

E42.2 [AB]�A ε thp38�A ε “&pq'(3A3@pqT3@
1

pT
1

@qTU)”�B ε “&p'(3Apφ@pTU)”��CmplC
prntmBEqvl2AEssnt@BTUVW ε �F1prntmpEA, B, Eqvl2AEssnt@ATU, CmplD
prntmCSgnfnctBEqvl2AEssnt@ATUVWXYZ

E43 [ABCDEFG]�A ε 2prntmp@B,C,D,E, F,GT���1A ε prntmp@B,C,D,ET�
2F ε prntm@DT�
3Uprcd@F T ε in@ET�
4G ε simprntm@F T

38 This example assumes that thesis A has been added to system C immediately after thesis
C99.
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E43.0 [AB]�A ε thp39�A ε “&pq'(3A3@pqT3@
1

pT
1

@qTU)”�B ε “&p'(3A3@ppTφ@pTU)”��CmplCprntmBEqvl2AEssnt@BTUVW ε 2prntmpEA,B,Eqvl2AEssnt@ATU,CmplDprntmC
Sgnfnct BEqvl2 AEssnt @ATUVWX, Cmpl Dvrb � in BEqvl2 AEssnt @ATUV �
scdCSgnfnctBEqvl2AEssnt@ATUVWX,CmplDvrb � inBEqvl2AEssnt@ATUV � scdC
SgnfnctBEqvl2AEssnt@ATUVWXY

E43.1 C1 ε �E2prntmpDC1, C1, Eqvl2AEssnt@C29TU, 1ingrBEqvl2AEssnt@C29TUV,
CmplCprntmBEqvl2AEssnt@C29TUVW,CmplCprntmBEqvl2AEssnt@C29TUVWXY

E43.2 CmplCprntmBEqvl2AEssnt@C95TUVW ε �D2prntmpCC8,C95,C8,CmplAprntm@
C8TU,CmplBprntmAEqvl1@C8TUV,CmplAprntm@C8TUWX

E43.3 CmplCprntmBEqvl2AEssnt@C43TUVW ε�E2prntmpDC29,C43,Eqvl2AEssnt@C29TU, CmplCprntmBEqvl2AEssnt@C29TUVW, CmplCprntmBEqvl2AEssnt@C29TUVW,
CmplCprntmBEqvl2AEssnt@C29TUVWXY

E43.4 [AB]�A ε thp40 �A ε “&pq'(3A3@pqT3@
1

pT
1

@qTU)”�B ε “&p'(3A3@ppTφ@pTU)”��
CmplCprntmBEqvl2AEssnt@BTUVW ε �F2prntmpEA,B,Eqvl2AEssnt@ATU,CmplDprntmCSgnfnctBEqvl2AEssnt@ATUVWX,CmplDvrb � inBEqvl2AEssnt@ATUV �
scdCSgnfnctBEqvl2AEssnt@ATUVWX,CmplAprntm@C1TUYZ

39 This example assumes that thesis A has been added to system C immediately after thesis
C99.

40 This example assumes that thesis A has been added to system C immediately after thesis
C99.
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6.2. Meaningful expressions

There is no explanation of ‘meaningful expression’ among the official terminological
explanations of �5. However, Leśniewski published such an explanation in a footnote to his
article on definitions, which does not generally concern protothetic41. The conditions of this
explanation obtain in computative protothetic, but we have in our system two additional
restrictions: that no variable in a meaningful expression may have the shape of a constant,
and that no meaningful expression may contain a variable in some category unless there
exists in the system a thesis containing a variable in that category. This last requirement
is complex enough to require an explanation of its own:

E44 [ABCDEFGH]�A ε extvarp(B,C,D,E, F,G,H)42���1E ε thp@DT�
2F ε in@ET�
3A ε cnvar@A,F T�
4G ε homosemp@A,DT�
5H ε in@CT�
6H ε gnrl�B ε Essnt@HT�G ε

frp@DT���[
IJ ]�I ε thp@DT�J ε in@IT�B ε An@G,H, JT
E44.0 3ingrBEqvl1AEssnt@C25TTV ε extvarpC7ingr@C26T,C26,C25,C25,C25, 3ingrB

Eqvl1AEssnt@C25TTV,Eqvl1@C26TW
E44.1 7ingr@C27T ε �BextvarpA7ingr@C26T,C26,C27,Eqvl1@C27T,Eqvl1@C27T,Eqvl1@C27T,Eqvl1@C26TUV
E44.2 7ingr@C27T ε �BextvarpA7ingr@C26T,C26,C27,C1,Eqvl1@C27T,Eqvl1@C27T,

Eqvl1@C26TUV
E44.3 3ingr@C1T ε �BextvarpA7ingr@C26T,C26,C1,C1,C1,C1,Eqvl1@C26TUV
E44.4 1ingrAEqvl1@C79TU ε �BextvarpA7ingr@C26T,C26,C79,C79,C79,C79,Eqvl1@

C26TUV
E44.5 7ingr@C27T ε�BextvarpA7ingr@C26T,C1,C27,C27,Eqvl1@C27T,C27,Eqvl1@C26TUV
E44.6 7ingr@C27T ε �BextvarpA7ingr@C26T,C26,C27,C27,Eqvl1@C27T,C27,C26UV

41 LEŚNIEWSKI31, pp. 301–2.
42 A is a variable already existing in the semantic category to which B is suited to belong, in

C, relative to D, and by means of E, F , G, and H.
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E44a [AB]�A ε propp@BT43���1B ε thp�
2[
C]�C ε vrb�C ε frp@BT�A ε cnf@CT�[DE]�D ε thp@

BT�E ε in@DT��C ε �Acnvar@C,ETU���[
C]�C ε frp@BT�A ε genfnct@CT���A ε

gnrl�
3[C]�C ε trm�C ε in@AT��C ε Id@AT���[
D]�D ε qntf�D ε in@AT�C ε int@DT���[
DE]�D ε in@AT�C ε var@E,DT���C ε constp@B,AT�
4[CD]�D ε qntf�D ε in@AT�C ε int@DT��[
EF ]�E ε in@

AT�F ε var@C,ET�
5[CDE]�E ε in@AT�C ε cnvar@D,ET��C ε Id@DT���

[
FG]�C ε quasihomosemp@D,B,A, F,GT�
6[C]�C ε gnrl�C ε in@AT��C ε Id@AT���[
DEFG]�D

ε thp@BT�E ε in@DT�F ε in@AT�G ε homosemp@B,BT�G ε Anarg@C,E, F T�
7[CD]�C ε gnrl�C ε in@AT�D ε Essnt@CT��D ε vrb���[
E]�E ε frp@BT�D ε genfnct@ET�
8[C]�C ε fnct�C ε in@AT��C ε Id@AT���[
D]�D ε gnrl�D ε in@AT�C ε Essnt@DT���[
DE]�C ε fnctp@B,A,D,ET�
9[CDEF ]�C ε qntf�C ε in@AT�D ε int@CT�E ε thp@BT�F

ε in@ET�F ε cnf@DT��[
G]�G ε qntf�G ε in@ET�F ε int@GT���[
G]�G ε in@ET�F ε

cnvar@F,GT�
10[CD]�D ε in@AT�C ε cnvar@C,DT��[
EFGHI]�E ε

extvarp@C,A,B, F,G,H, IT
E44a.0 C1 ε propp@C1T
E44a.1 [A]�A ε “&u'(u)”��A ε �Apropp@C25TU
E44a.2 2ingr@C1T ε �Apropp@C1TU
E44a.3 Essnt@C25T ε �Apropp@C25TU
E44a.4 [A]�A ε “&p'(3@ΛΛT)”��A ε �Apropp@C1TU
E44a.5 [A]�A ε “&p'(p@pT)”��A ε �Apropp@C79TU
E44a.6 [AB]�A ε thp44�A ε “&f '(3A&p'(f @pT)1<

1
f>

1
U)”�B ε “1<

1
f>

1
”��B ε �A

propp@ATU
43 A is a meaningful expression relative to B.
44 This example assumes that thesis A has been added to system C immediately after thesis

C99.
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E44a.7 [AB]�A ε thp45�A ε “&pq'(3A3@pqT3@
1

pT
1

@qTU)”�B ε “&p'(3@
1

pT
1

)”��B ε �A
propp@ATU

E44a.8 [A]�A ε “3@ΛΛT@ΛΛT”��A ε �Apropp@C1TU
E44a.9 [A]�A ε “&Λ'(3@ΛΛT)”��A ε �Apropp@C25TU
E44a.10 C26 ε �Apropp@C24TU

As with Leśniewski’s explanation of expressions meaningful in�5, E44a is not actually
used in the directives or in any later explanation, but the purpose of certain conditions in
later explanations becomes clearer when they are compared with the conditions of E44a.

6.3. Explanations specific to system C

At this point we can state the final explanations which we require before stating the
directives of system C.

E45 [AB]�A ε Negt@BT46���1A ε Eqvl1@BT�
2Eqvl2@BT ε cnfA4ingr@C1TU

E45.0 3ingr@C1T ε Negt@C1T
E45.1 C1 ε �ANegt@C1TU
E45.2 3ingr@C7T ε �ANegt@C7TU

E46 [ABC]�A ε primp@B,CT47���1A ε thp@CT�
2B ε trm�
3B ε in@AT�
4[
D]�D ε thp�D ε prcd@AT�
5[D]�D ε in@AT��B ε �Acnvar@B,DTU�
6[DE]�D ε thp@AT�E ε in@DT�E ε cnf@BT�E ε

homosemp@B,CT��D ε Id@AT
E46.0 C5 ε primpAEqvl2@C5T,C5U
E46.1 Eqvl2@C5T ε �BprimpAEqvl2@C5T,C5UV

45 This example assumes that thesis A has been added to system C immediately after thesis
C99.

46 A is the expression negated in B.
47 A is an introductory thesis for B, relative to C.
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E46.2 C3 ε �BprimpAEqvl1@C3T,C3UV
E46.3 C5 ε �Aprimp@C6,C5TU
E46.4 C1 ε �BprimpAEqvl1@C1T,C1UV
E46.5 C25 ε �DprimpC3ingrBEqvl1AEssnt@C25TUV,C25WX
E46.6 C3 ε �BprimpAEqvl2@C3TC3UV

E47 [ABC]�A ε cruxp@B,CT48���1B ε thp@CT�
2A ε Id@BT���A ε Negt@BT�
31ingr@AT ε trm�
4[DE]�D ε prntm@AT�E ε arg@DT��E ε trm

E47.0 C6 ε cruxp@C6,C6T
E47.1 Eqvl1AEqvl1@C3TU ε �BcruxpAEqvl1@C3T,C3UV
E47.2 C1 ε �Acruxp@C2,C2TU
E47.3 Eqvl1@C26T ε �Acruxp@C26,C26TU
E47.4 Eqvl1@C3T ε �Acruxp@C3,C3TU

E48 [ABCDEFGH]�A ε rspcrxp@B,C,D,E, F,G,HT49���1A ε cruxp@D,CT�
2B ε cruxp@E,CT�
3F ε trm�
4G ε homosemp@H,CT�
5G ε cnf@HT�
6G ε in@AT�
7Avrb � in@ATU � Avrb �

in@BTU�
8Avrb � in@AT � prcd@GTU� Avrb � in@BT � prcd@F TU�

48 A is a critical expression decided by B, relative to C.
49 A is a critical expression corresponding to B, relative to C, in E and F respectively, by

means of G and H.
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9[IJ ]�I ε vrb�I ε in@BT�J ε

vrb�J ε in@AT�I ε�AId@F TU�Avrb � in@AT � prcd@JTU � Avrb � in@BT � prcd@ITU��I
ε cnf@JT
E48.0 C6 ε rspcrxpAEqvl1@C1T,C6,C6,C1,Eqvl1@C1T,C6,C6U
E48.1 Eqvl2@C5T ε �BrspcrxpAEqvl1@C1T,C6,C5,C1,Eqvl1@C1T,Eqvl2@C5T,C6UV
E48.2 C6 ε �BrspcrxpAEqvl2@C1T,C6,C6,C1,Eqvl2@C1T,C6,C6UV
E48.3 C31 ε �CrspcrxpBC31,C31,C31,C31,CmplA3ingr@C31T � 4ingr@C31TU, 3ingr@

C31T,C6VW
E48.4 [A]�A ε thp50�A ε “V@ΛΛT”��C6 ε �BrspcrxpAEqvl1@C1T, A,C6,C1,Eqvl1@

C1T,C6, 1ingr@ATUV
E48.5 C6 ε �BrspcrxpAEqvl1@C1T,C6,C6,C1,Eqvl1@C1T,C6,Eqvl1@C1TUV
E48.6 Eqvl1@C30T ε �BrspcrxpAC44,C44,C30,C44, 1ingr@C44T,C30,C30UV
E48.7 C31 ε �BrspcrxpAEqvl1@C1T,C31,C31,C1,Eqvl1@C1T,C31,C31UV
E48.8 C31 ε �BrspcrxpAC31,C31,C31,C31, 1ingr@C31T, 3ingr@C31T,C6UV
E48.9 C31 ε �BrspcrxpAC44,C44,C31,C44, 1ingr@C44T, 1ingr@C31T, 1ingr@C31TUV

E49 [ABCDEF ]�A ε simcrxp@B,C,D,E, F T51���1A ε rspcrxpAB, C, D, E, 1ingr@BT,
1ingr@AT, 1ingr@ATU�

2F ε cnfA1ingr@ATU�
31ingr@AT ε homosemp@F,CT�
4A ε Id@DT�B ε Id@ET���A ε Negt@DT�B ε Negt@ET

E49.0 C45 ε simcrxpAC31,C45,C45,C31, 1ingr@C45TU
50 This example assumes that in constructing system C we have modified thesis C95 and all

subsequent theses, replacing any words equiform with ‘7’ by means of words equiform with ‘V’;
thesis A in the resulting system corresponds to thesis C96 in system C.

51 A is a critical expression decided in the same way as B, relative to C, in D and E respectively,
by means of F .
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E49.1 C44 ε �BsimcrxpAC31,C44,C44,C31, 1ingr@C44TUV
E49.2 C45 ε �BsimcrxpAC31,C45,C45,C31, 1ingr@C31TUV
E49.3 [A]�A ε thp52�A ε “&f '(3A&p'(f@pT)/<

1
f>

1
U)”��C45 ε �DsimcrxpCC31, A,

C45,C31, 1ingrBEqvl2AEssnt@ATUVWX
E49.4 C44 ε �BsimcrxpAC30,C44,C44,C30, 1ingr@C44TUV

E50 [ABCDE]�A ε dsccrxp@B,C,D,ET53���1A ε rspcrxpAB,C,D,E, 1ingr@BT, 1ingr@
AT, 1ingr@ATU�

2A ε Id@DT�B ε Negt@ET���A ε Negt@DT�B ε Id@ET�
3[FG] � F ε cruxp @G, CT � 1ingr @F T ε

cnf A1ingr@ATU�1ingr@F T ε homosemp@1ingr@AT, CU�F ε �Acnf@ATU��[
HI]�H ε

simcrxpAF,C, I,G, 1ingr@BTU
50.0 C6 ε dsccrxpA3ingr@C1T,C6,C6,C1U
50.1 2ingr@C1T ε �BdsccrxpA3ingr@C1T,C1, 2ingr@C1T,C1UV
50.2 C6 ε �Adsccrxp@C6,C6,C6,C6TU
50.3 Eqvl1@C30T ε �Adsccrxp@C57,C57,C30,C57TU

E51 [ABCD]�A ε plenp@B,C,DT54���1C ε cruxp@D,BT�
2A ε cnfA1ingr@CTU�
3A ε homosempA1ingr@CT, BU�
4[EFGHIJ ]�E ε cruxp@F,BT�G ε prntm@ET�H

ε arg@GT�I ε thp@BT�J ε constp@B, IT�1ingr@ET ε homosemp@A,BT�J ε homosemp@
H,BT��[
KLM ]�K ε rspcrxp@E,B,L, F,H,M, JT�

5[EF ]�E ε cruxp@F,BT�1ingr@ET ε homosemp@
A,BT��[
GH]�G ε dsccrxp@E,B,H, F T

52 This example assumes that thesis A has been added to system C immediately after thesis
C99.

53 A is the only critical expression distinguishing its first word from that of critical expression
B, relative to C, by means of D and E.

54 A is a constant in a semantic category which has been exhausted relative to B, by means of
C and D.



6.3. Explanations specific to system C 87

51.0 C6 ε plenp@C6,C6,C6T
51.1 C6 ε �Aplenp@C6,C6,C5TU
51.2 Eqvl1@C1T ε �Aplenp@C6,C6,C6TU
51.3 [A]�A ε thp55�A ε “&f '(3A&p'(f@pT)/<

1
f>

1
U)”��1ingrAEqvl2@ATU ε �Aplenp@

A,C44,C44TU
51.4 Our system does not contain an example which verifies the independence of

condition 4 of E51 because system C is constructed observing the convention
that the critical theses for a new constant should be introduced immediately
after its definition. If, conforming completely to the directives, we were to
abandon this convention, and we were to introduce theses C43 and C44
immediately after thesis C30, we could then demonstrate the independence

of condition 4 by affirming (truly) that 1ingr@C44T ε�Aplenp@C44,C44,C44TU.
51.5 1ingr@C45T ε �Aplenp@C45,C45,C45TU

E52 [ABCa]�A ε psubst@B,C, aT56���1A ε Cmpl@aT�
2B ε expr�
3C ε expr�
4B ε in@CT�
5a � Avrb � in@BTU�
6[DE]�D ε vrb�D ε in@BT�E ε a�E ε �Acnf@DTU�Aa � prcd@ETU � Avrb � in@BT � prcd@DTU��[
F ]�D ε var@F,CT�
7[DEFG]�D ε cnvar@E,CT�D ε in@BT�E ε in@BT�F ε a�G ε a�Aa � prcd@F TU � Avrb � in@BT � prcd@DTU�Aa � prcd@GTU � Avrb �

in@BT � prcd@ETU��F ε cnf@GT�
8[DE]�D ε vrb�D ε in@BT�E ε a�Aa � prcd@ETU� Avrb � in@BT � prcd@DTU��E ε trm���E ε fnct���E ε gnrl���E ε cnf@DT

E52.0 C1 ε psubstAC1,C1,vrb � in@C1TU
E52.1 C2 ε �BpsubstAC1,C1,vrb � in@C1TUV

55 This example assumes that thesis A has been added to system C immediately after thesis
C99.

56 A is a partial substitution of B from C, by means of a.
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E52.2 C1 ε �CpsubstBCclA1ingr@C2T � 2ingr@C2T � 5ingr@C2T � 6ingr@C2T � 7ingr@C2TU,C2,vrb � in@C1TVW
E52.3 C1 ε �CpsubstBEqvl1@C2T,CclAEqvl1@C2T � Uingr@C2TU,vrb � in@C1TVW
E52.4 C1 ε �BpsubstAC1,C2,vrb � in@C1TUV
E52.5 C1 ε �CpsubstBCclAEqvl1@C2T � Eqvl2@C2TU,C2,vrb � in@C1TVW
E53.6 C1 ε �BpsubstAC7,C7,vrb � in@C1TUV
E53.6 Eqvl1@C8T ε �CpsubstBEqvl1AEssnt@C43TU,C43,vrb � inAEqvl1@C8TUVW
E53.7 2ingr@C26T ε �CpsubstBEssntAEqvl1@C26TU,Eqvl1@C26T, 2ingr@C26TVW

E54 [ABCDEF ]�A ε rspvarp@B,C,D,E, F T57���1C ε thp�
2A ε vrb � in@DT58
3F ε var@B,ET�
4D ε psubstAEssnt@ET, E,vrb � in@DTU�
5Avrb � in@DT � prcd@ATU � Bvrb �

inAEssnt@ETU � prcd@F TV�
6[GH]�G ε cnvar@H,ET�G ε �AId@HTU��[
IJ ]G ε quasihomosemp@H,C,E, I, JT

E54.0 C6 ε rspvarpA4ingr@C26T,C1,C6,Eqvl1@C26T, 7ingr@C26TU
E54.1 C6 ε �BrspvarpA4ingr@C26T,Samp,C6,Eqvl1@C26T, 7ingr@C26TUV
E54.2 [A]�A ε “&f '(f@ΛΛT)”��C1 ε �BrspvarpA2ingr@AT,C1,C1, A, 5ingr@ATUV
E54.3 C6 ε �BrspvarpAC26,C1,C6,Eqvl1@C26T, 7ingr@C26TUV

57 A is a term corresponding to a word F bound by B, relative to C, in D and E respectively.
58 The expression ‘in@DT’ can be omitted from this explanation without altering the meaning of

‘rspvarp’. I have nevertheless retained it because the proof relies on certain presuppositions which
Leśniewski would probably have wished to avoid.
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E54.4 1ingr@C1T ε �BrspvarpA4ingr@C26T,C1,C1,Eqvl1@C26T, 7ingr@C26TUV
E54.5 [A]�A ε “&p'(3@ppT)”��Eqvl2@C1T ε �CrspvarpB2ingr@AT,C1,C1, A,Eqvl1A

Essnt@ATUVW
E54.6 [AB]�A ε thp59�A ε “Λ@ΛΛT”�B ε “&p'(p@pΛT)”��1ingr@AT ε �CrspvarpB

2ingr@BT, A,A,B, 1ingrAEssnt@BTUVW
E55 [ABCDEFG]�A ε rspcnstp@B,C,D,E, F,GT60���1[
H]�A ε rspvarp@B, C, D, E,

HT�
2F ε cnf@AT�
3F ε homosemp@A,CT�
4G ε expr�
5Avrb � in@GTU � Avrb � in@DTU�
6[HI]�H ε vrb�H ε in@DT�I ε

vrb�I ε in@GT�Avrb � in@DT � prcd@HTU � Avrb � in@GT � prcd@ITU�H ε �Acnf@ITU��[
J ]�H ε rspvarp@B,C,D,E, JT
E55.0 C6 ε rspcnstpA4ingr@C26T,C6,C6,Eqvl1@C26T,C6,Eqvl1@C1TU
E55.1 C6 ε �Arspcnstp@Samp,C6,C6,Samp,C6,C6TU
E55.2 C6 ε �BrspcnstpA4ingr@C26T,C6,C6,Eqvl1@C26T,Eqvl1@C1T,Eqvl1@C1TUV
E55.3 C6 ε �BrspcnstpA4ingr@C26T,C6,C6,Eqvl1@C26T,Eqvl1@C7T,Eqvl1@C1TUV
E55.4 [A]�A ε “&p'(3@ppT)”��Eqvl1@C1T ε �CrspcnstpB2ingr@AT,C1,C1, A,Eqvl1@

C1T,CclA3ingr@C2T � 4ingr@C2T � 5ingr@C2T � 6ingr@C2T � Uingr@C2TUVW
59 This example assumes that in constructing system C we have modified thesis C95 and all

subsequent theses, replacing any words equiform with ‘7’ by means of words equiform with ‘Λ’;
thesis A in the resulting system corresponds to thesis C96 in system C.

60 A is a term equiform with, and in the same semantic category as F , corresponding to a
variable bound by B, relative to C, in D and E respectively, where G differs from D only at places
corresponding to words bound by B in E.
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E55.5 C6 ε �Crspcnstp B4ingr @C26T,C6,C6,Eqvl1 @C26T,C6,Cmpl AEqvl1 @C1T �
Eqvl2@C1TUVW

E55.6 5ingr@C24T ε �BrspcnstpA2ingr@C25T,C24,C24,C25, 5ingr@C24T,C23UV
E56 [ABC]�A ε cnsqverfp@B,CT61���1C ε thp@BT�

2[
DEF ]�D ε rspvarp@E,B,C,A, F T�
3[CDEF ]�C ε thp@BT�D ε rspvarp@E,B,C,A, FT��[
GH]�D ε plenp@B,G,HT�
4[CDEFGHI]�C ε thp�D ε rspvarp@E, B, C, A,

F T�G ε plenp@B,H, IT�G ε homosemp@D,BT��[
JK]�J ε thp@BT�K ε rspcnstp@
E,B, J,A,G,CT
E56.0 C25 ε cnsqverfp@C24,C24T
E56.1 C25 ε �Acnsqverfp@C1,C24TU
E56.2 C25 ε �Acnsqverfp@C1,C1TU
E56.3 C25 ε �Acnsqverfp@C4,C4TU
E56.4 C25 ε �Acnsqverfp@C23,C23TU

E57 [ABC]�A ε cnsqrejp@B,CT62���1C ε thp@BT�
2[
DEF ]�D ε rspvarpAE,B,Negt@CT,Negt@AT, F U�
3[D]�D ε cnvarAD,Negt@ATU��[
EFGHI]�E ε

extvarpAD,Negt@AT, B, F,G,H, IU
E57.0 C26 ε cnsqrejp@C25,C1T
E57.1 C26 ε �BcnsqrejpAC25,Eqvl1@C2TUV
E57.2 C26 ε �Acnsqrejp@C25,C3TU
E57.3 C26 ε �Acnsqrejp@C24,C1TU

E58 [ABCab]�A ε resp@B,C, a, bT63���1A ε CmplA1ingr@AT � aU�
61 A is a consequence by verification, relative to B, by means of C.
62 A is a consequence by rejection, relative to B, by means of C.
63 A is a substitution, corresponding to B, of part of C, by means of a and of b.
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21ingr@AT ε trm�
3B ε psubstBEqvl1AEssnt@CTU, C, bV�
4[D]�D ε a���D ε vrb � inBEqvl2AEssnt@CTUV� scdC1ingrBEqvl2AEssnt@CTUVW��Cmpl@aT ε psubstECmplDvrb � inBEqvl2AEssnt@

CTUV � scdC1ingrBEqvl2AEssnt@CTUVWX, C, aY�
5[DEFG]�D ε a�E ε b�F ε cnvar@G,CT�F ε inBEqvl1AEssnt@CTUV�G ε inBEqvl2AEssnt@CTUV�Ab � prcd@ETU � Cvrb � inBEqvl1A

Essnt@DTUV � prcd@F TW�Aa � prcd@DTU � Dvrb � inBEqvl2AEssnt@CTUV � prcd@GT �
scdC1ingrBEqvl2AEssnt@CTUVWX��D ε cnf@ET
E58.0 Eqvl1@C1T ε respAC1,C5,square circles64,vrb � in@C1TU
E58.1 1ingr@C98T ε �CrespBC90,C95,vrb � in@C98T � scdA1ingr@C98TU,vrb � in@

C90TVW
E58.2 2ingr@C1T ε �BrespAC1,C5,square circles,vrb � in@C1TUV
E58.3 C6 ε �BrespAC7,C5,square circles,vrb � in@C1TUV
E58.4 C6 ε �BrespAC1,C5,C6,vrb � in@C1TUV
E58.5 C44 ε �CrespBC7,C43,vrb � in@C44T � scdA1ingr@C44TU,vrb � in@C7TVW

E59 [ABC]�A ε resp@B,CT���1[
ab]A ε resp@B,C, a, bT
E59.0 Eqvl1@C1T ε resp@C1,C5T
E59.1 C1 ε �Aresp@C1,C5TU

E60 [ABCDEFG]�A ε divsigp@B,C,D,E, F,GT65���1A ε resp@E,DT�
64 The expression ‘square circles’ is equivalent to any other name which names no objects.
65 A is an example beginning with a constant equiform with B and belonging to the same

semantic category relative to C, decided in the opposite way from E, which corresponds to it
according to D, by means of F and G.
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2B ε cnfA1ingr@ATU�
3B ε homosempA1ingr@AT, CU�
4F ε thp@CT�
5G ε thp@CT�
6A ε Id@F T�E ε Negt@GT���A ε

Negt@F T�E ε Id@GT
E60.0 Eqvl1@C1T ε divsigpAEqvl1@C1T,C1,C5,C1,C1,C1U
E60.1 Eqvl1@C1T ε �BdivsigpAEqvl1@C1T,C1,C2,C1,C1,C1UV
E60.2 Eqvl1@C1T ε �Adivsigp@C6,C6,C5,C1,C1,C1TU
E60.3 [A]�A ε thp66�A ε “Λ@VT”��Eqvl1@C1T ε �BdivsigpA1ingr@AT, A,C5,C1,C1,

C1TU
E60.4 5ingr@C2T ε �BdivsigpAEqvl1@C1T,C2,C5,C1,Eqvl1@C2T,C1UV
E60.5 Eqvl1@C1T ε �BdivsigpAEqvl1@C1T,C1,C5,Eqvl1@C2T,C1,Eqvl1@C2TUV
E60.6 C6 ε �Adivsigp@C6,C6,C5,C1,C6,C1TU

E61 [AB]�A ε legdefp@BT67���1[CD]�C ε qntf�C ε in@AT�D ε in@CT��D ε �DcnfC
1ingrBEqvl2AEssnt@ATUVWX�

2[C]�C ε trm�C ε inBEqvl1AEssnt@ATUV��[
D]�D ε

qntf�D ε in@AT�C ε int@DT���[
DE]�D ε in@AT�C ε var@E,DT���C ε constp@B,AT�
3[CD]�D ε qntf�D ε in@AT�C ε int@DT��[
EF ]�E ε in@

AT�F ε var@C,ET�
4[CDE]�C ε intAQntf@ATU�E ε prntmAEssnt@ATU�D ε arg@ET��[
F ]�F ε in@DT�F ε var@C,AT�
5[CDE]�C ε inBEqvl1AEssnt@ATUV�E ε in@AT�D ε cnvar@C,ET�D ε inBEqvl1AEssnt@ATUV��D ε Id@CT���[
FG]�D ε quasihomosemp@C,B,

A, F,GT�
66 This example assumes that in constructing system C we have modified thesis C29 and any

subsequent theses containing words equiform with ‘-’, replacing all words equiform with ‘-’ by
means of words equiform with ‘Λ’; thesis A in the resulting system corresponds to thesis C31 in
system C.

67 A is acceptable as a definition immediately after thesis B.
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6[C]�C ε gnrl�C ε in@AT�C ε �AId@ATU��[
DEFG]�D
ε homosemp@B,BT�E ε thp@BT�F ε in@ET�G ε in@AT�D ε Anarg@C,F,GT�

7[CD]�C ε gnrl�C ε in@AT�D ε Essnt@CT��D ε vrb���[
E]�E ε frp@BT�D ε genfnct@ET�
8[C]�C ε fnct�C ε inBEqvl1AEssnt@ATUV��[
D]�D ε

gnrl�D ε in@AT�C ε Essnt@DT���[
DE]�C ε fnctp@B,A,D,ET�
9[C]�C ε prntmBEqvl2AEssnt@ATUV��[
D]�D ε arg@CT�
10[CD]�C ε prntmBEqvl2AEssnt@ATUV�D ε arg@CT��

[
E]�D ε var@E,AT�
11[CD]�C ε trm�C ε inBEqvl2AEssnt@ATUV�D ε trm�D ε

inBEqvl2AEssnt@ATUV�C ε cnf@DT��C ε Id@DT�
12[CD]�C ε prntmBEqvl2AEssnt@ATUV�D ε prntmBEqvl2A

Essnt@ATUV�C ε simprntm@DT��C ε Id@DT�
13[CDE]�C ε 1prntmp@B,A,D,ET�UingrBEqvl2AEssnt@

ATUV ε in@CT��C ε simprntm@ET�
14[CDEFG]�C ε 2prntmp@B,A,D,E, F,GT�G ε in@AT�

Uprcd@GT ε in@CT��C ε simprntm@ET�
15[CDE] �C ε prntmBEqvl2 AEssnt @ATUV �UingrBEqvl2 A

Essnt@ATUV ε in@CT�D ε thp@BT�E ε in@DT�C ε simprntm@ET��[
FG]�C ε 1prntmp@B,A, F,GT�
16[CDEF ]�C ε prntmBEqvl2AEssnt@ATUV�D ε prntm�D

ε in@AT�Uprcd@DT ε in@CT�E ε thp@BT�F ε in@ET�C ε simprntm@F T��[
GHI]�C ε

2prntmp@B,A,G,H, I,DT�
17[CDEF ]�C ε qntf�C ε in@AT�D ε int@CT�E ε thp@BT�

F ε in@ET�F ε cnf@DT��[
G]�G ε qntf�G ε in@ET�F ε int@GT���[
GH]�G ε in@ET�F
ε var@H,GT�

18[CDE]�C ε thp@BT�D ε qntf�D ε in@CT�E ε int@DT��E ε �DcnfC1ingrBEqvl2AEssnt@ATUVWX�
19[CD]�D ε in@AT�C ε inBEqvl1AEssnt@ATUV�C ε cnvar@

C,DT��[
EFGHI]�E ε extvarp@C,A,B, F,G,H, IT�
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20[CDEF ]�C ε thp@BT�D ε in@CT�F ε in@AT�E ε AnC
1ingrBEqvl2AEssnt@ATUV, D, FW�E ε constp@B,CT��[
GHIJ ]�G ε divsigp@E,B,A,
H, I, JT
E61.0 C5 ε legdefp@C4T
E61.1 [A]�A ε “&ps'(3A3@psTs@pTU)”��A ε �Alegdefp@C25TU
E61.2 [A]�A ε “&p'(3A3@ppT-@pTU)”��A ε �Alegdefp@C30TU
E61.3 [A]�A ε “&p'(3A7@ppT/@pTU)”��A ε �Alegdefp@C25TU
E61.4 [A]�A ε “&p'(3A3@p&qr'(q)T.@pTU)”��A ε �Alegdefp@C25TU
E61.5 [A]�A ε “&pq'(3Ap9@pqTU)”��A ε �Alegdefp@C25TU
E61.6 [A]�A ε “&pqr'(3C3B&s'(3As@pTsU)3@qrTVφ@pqrTW)”��A ε �Alegdefp@C79TU
E61.7 [AB]�A ε thp68�A ε “&fp'(3Af@pTφ<

1
fp>

1
U)”�B ε “&pqr'(3B3Aφ<

1
&u'(u)p>

1
3@qrTUψ@pqrTV)”��B ε �Alegdefp@ATU

E61.8 [AB]�A ε thp69�A ε “&pq'(3A3@pqT3@
1

pT
1

@qTU)”�B ε “&pqr'(3C3B3A&s'(3@
1

sT
1

)pU3@qrTVφ@parTW”��B ε �Alegdefp@ATU
E61.9 [A]�A ε “&pqr'(3A3@pqT@qrTφ@pqrTU)”��A ε �Alegdefp@C25TU
E61.10 [A]�A ε “&p'(3Ap-@&T@pTU)”��A ε �Alegdefp@C25TU
E61.11 [A]�A ε “&pq'(3A3@pqTφ@pqrTU)”��A ε �Alegdefp@C25TU
E61.12 [A]�A ε “&pq'(3A3@pqTφ@ppqTU)”��A ε �Alegdefp@C25TU
E61.13 [A]�A ε “&pq'(3A3@pqT3@pT@qTU)”��A ε �Alegdefp@C25TU
E61.14 [A]�A ε “&pq'(3A3@pqTφ<pq>U)”��A ε �Alegdefp@C25TU

68 This example assumes that thesis A has been added to system C immediately after thesis
C99.

69 This example assumes that thesis A has been added to system C immediately after thesis
C99.
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E61.15 [ABC]�A ε thp@BT70�A ε “&pq'(3A3@pqT3@
1

pT
1

@qTU)”�B ε thp�B ε “3A3@
1

ΛT
1

@VTΛU”�C ε “&pq'(3A7@pqT7@
2

pT
2

@qTU)”��C ε �Alegdefp@BTU
E61.16 [ABC]�A ε thp@BT71�A ε “V@ΛT”�B ε thp�B ε “&f '(3Af@ΛTf@ΛTU)”�C ε “&

fp'(3Af@pTφ@fpTU)”��C ε �Alegdefp@BTU
E61.17 A ε “&pqr'(3B3A3@pqTrU3@pT@qrTU)”��A ε �Alegdefp@C29TU
E61.18 [A]�A ε “&Λ'(3Λ-@ΛTU)”��A ε �Alegdefp@C25TU
E61.19 [A]�A ε “&q'(3Aqp@qTU)”��A ε �Alegdefp@C25TU
E61.20 C29 ε �Alegdefp@C24TU
E61.21 [A]�A ε “&pq'(3A3@pqT3

1

@pqTU)”��A ε �Alegdefp@C25TU
E62 [ABCD]�A ε 1cnsqdefp@B,C,DT72���1[
E]�C ε primp@E,BT�

2D ε thp@BT�
3A ε resp@D,CT�
41ingr@AT ε cnfC1ingrBEqvl2AEssnt@CTUVW

E62.0 C6 ε 1cnsqdefp@C5,C5,C1T
E62.1 C6 ε �A1cnsqdefp@C7,C7,C6TU
E62.2 C6 ε �B1cnsqdefpAC5,C5,Eqvl1@C2TUV
E62.3 C6 ε �A1cnsqdefp@C5,C5,C2TU
E62.4 Eqvl1@C1T ε �A1cnsqdefp@C5,C5,C1TU

E63 [ABCD]�A ε 2cnsqdefp@B,C,DT���1[
E]�C ε primp@E,BT�
2D ε thp@BT�
3Negt@AT ε respANegt@DT, CU�

70 This example assumes that thesis A has been added to system C immediately after thesis
C99, and that thesis B has been added immediately after thesis A.

71 This example assumes that we have modified system C so that in thesis C43 and in all
subsequent theses, we have replaced any words equiform with ‘/’ with words equiform with ‘V’; in
the resulting system A corresponds to thesis C44, and B corresponds to thesis C79.

72 A is an expression of the first kind which can be inferred, relative to B, from C and D.
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41ingrANegt@ATU ε cnfC1ingrBEqvl2AEssnt@CTUVW
E63.0 C30 ε 2cnsqdefp@C29,C29,C1T
E63.1 C15 ε �A2cnsqdefp@C22,C22,C9TU
E63.2 C30 ε �B2cnsqdefpAC29,C29,Eqvl1@C2TUV
E63.3 C30 ε �A2cnsqdefp@C29,C29,C6TU
E63.4 C68 ε �A2cnsqdefp@C29,C29,C1TU

E64 [ABC]�A ε 1compn@B,CT73���1Eqvl1@AT ε cnf@BT�
2Eqvl2@AT ε cnf@CT

E64.0 C4 ε 1compn@C1,C2T
E64.1 C4 ε �A1compn@C2,C2TU
E64.2 C4 ε �A1compn@C1,C1TU

E65 [ABC]�A ε 2compn@B,CT���1Eqvl1ANegt@ATU ε cnf@BT�
2Eqvl2ANegt@ATU ε cnfANegt@CTU

E65.0 C3 ε 2compn@C1,C1T
E65.1 C3 ε �A2compn@C2,C1TU
E65.2 C3 ε �A2compn@C1,C2TU

E66 [ABC]�A ε 3compn@B,CT���1Eqvl1ANegt@ATU ε cnfANegt@BTU�
2Eqvl2ANegt@ATU ε cnf@CT

E66.0 C9 ε 3compn@C1,C6T
E66.1 C9 ε �A3compn@C2,C6TU
E66.2 C9 ε �A3compn@C1,C7TU

E67 [ABC]�A ε 4compn@B,CT���1Eqvl1@AT ε cnfANegt@BTU�
73 A is an expression of the first kind which can be obtained by combining B and C.
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2Eqvl2@AT ε cnfANegt@CTU
E67.0 C16 ε 4compn@C8,C9T
E67.1 C16 ε �A4compn@C9,C9TU
E67.2 C20 ε �A4compn@C8,C9TU

6.4. The directives of system C

The terms explained above allow us to express the directives of system C. Following
the example of the three sets of directives published by Leśniewski, we state them as points
of a single rule of procedure:

Under the presupposition that A is the last of the theses which already
belongs to system C, one may add an expression B to the system immediately
after A only if at least one of the nine following conditions is fulfilled:

(1) [
CD]�C ε thp@AT�D ε thp@AT�B ε 1compn@C,DT [Dir. a]

(2) [
CD]�C ε thp@AT�D ε thp@AT�B ε 2compn@C,DT [Dir. b]

(3) [
CD]�C ε thp@AT�D ε thp@AT�B ε 3compn@C,DT [Dir. c]

(4) [
CD]�C ε thp@AT�D ε thp@AT�B ε 4compn@C,DT [Dir. d]

(5) B ε legdefp@AT [Dir. e]

(6) [
CD]�B ε 1cnsqdefp@A,C,DT [Dir. f ]

(7) [
CD]�B ε 2cnsqdefp@A,C,DT [Dir. g]

(8) [
C]�B ε cnsqverfp@A,CT [Dir. h]

(9) [
C]�B ε cnsqrejp@A,CT [Dir. i]

We can, of course, verify that system C has been constructed in a manner which
satisfies these directives. But we should be careful to remember, while constructing proofs
in the metatheory of system C, that there are ways of developing the system, based on the
same axiom and conforming to the same directives, which diverge considerably from the
system derived in chapter 4.
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6.5. Alternative directives

In investigating system C I spent some time considering not only alternative formu-
lations of the directives, but also directives different from those described above. It is not
likely that Leśniewski’s directives for computative protothetic were expressed in precisely
these terms. If any of his directives differed from mine in respect to the actual theses one
could add with their help, I believe the directive for rejection is most likely to have differed,
while the directive for definition may have differed in some respects.

In directive E57, for example, condition 3 prevents the added thesis from introducing
variables into a semantic category which previously contains only constants and, possibly,
functions. This could easily be replaced by a condition which required the semantic category
of all variables in the new thesis to have been exhausted. In system C this would mean
that thesis C26 could be added immediately after thesis C6, whereas under the constraints
I have imposed it cannot be added until after thesis C25.

Such variations are not particularly significant, in that the resulting systems resemble
system C very closely. There are, however, some very interesting systems which depart the
model of the systems described by Leśniewski, in that they do not require that we limit the
number of constants in any semantic category. We can produce such a system by changing
three of the directives of system C :

(1) The directive for definitions is replaced by a directive corresponding precisely to the
definition directive in system �5.

(2) The rejection directive is modified by simply omitting condition 3 from explanation
E57. This allows new variables to be introduced without restriction, much as in
system �5.

(3) The verification directive becomes much more complex. First, the method for de-
termining whether or not a group of constants exhausts a semantic category need
not refer to all constants in that category. Second, we do not need to require that
all possible substitutions be theses, only substitutions with some limited group of
constants which exhaust their respective semantic categories. Finally, a number of
‘safeguards’ imposed indirectly by the restrictions on definitions and by the restric-
tions on variables in system C no longer obtain; this requires further complications
in the explanations of terms corresponding to ‘plenp’ above.



7. The Metatheory of Protothetic

Among the most fundamental topics from the metatheory of protothetic are the consistency
and the completeness of the theory. Ideally we should construct ‘gapless’ proofs of these,
referring explicitly to conditions specified in terminological explanations and to other re-
quired presuppositions. The resulting proofs would exhibit aspects of the explanations and
of their contents and interrelation which are not apparent when the explanations have been
merely stated. However, such proofs would be far too long to include in the present work:
the proof of the consistency of system C alone refers to nearly every condition in every
terminological explanation in the last chapter.

Leśniewski published a few examples of metatheoretical ‘proofs’; he says of a typical
‘proof’ of this kind that he wants ‘to outline here, without any claim to precision’ some
‘circumstances’ of which he became aware, and that this outline explains the method by
which he assured himself that certain metatheorems are true1. The ‘proof’ which this
describes demonstrates the consistency and completeness of system �2.

Despite their length, proofs in the metatheory of protothetic can be quite straightfor-
ward, and they may lead to a better understanding of the system to which they apply. For
this reason it is appropriate to present at least an outline of some of the main proofs con-
cerning system C. In so doing I shall speak very informally, and with no claim to precision.

7.1. All theses are meaningful

Every thesis in a system of computative protothetic is meaningful; that is, [AB]�A
ε thp@BT��A ε propp@BT. The proof is complicated by the fact that some meaningful
expressions cease to be meaningful as the system develops; that is, it is not the case for
some systems of computative protothetic that [ABC]�A ε propp@BT�B ε thp@CT��A ε

propp@CT. In system C, for example, the expression ‘&V'(V)’ is meaningful relative to thesis
C4, but it is not meaningful relative to thesis C5 ; the second case violates condition 9 of
explanation E44a. Informally we may say that, by defining a constant equiform with ‘V’,
we prevent words of this shape from being used subsequently as legitimate variables.

The proof defines a property of being a thesis relative to which that thesis and all
previous theses are meaningful:

[A]�A ε propthp���A ε thp�[B]�B ε thp@AT��B ε propp@AT
Axiom C1 possesses this property, and it is inherited by all theses added to system C in
accordance with the directives. Most of the terms in explanation E44a allow us to prove a
lemma such as these:

[ABC]�A ε frp@BT�B ε thp@CT��A ε frp@CT
[ABCD]�A ε constp@B,CT�B ε thp@DT��A ε constp@D,CT
[ABCDEF ]�A ε fnctp@B,C,D,ET�B ε thp@F T��A ε fnctp@F,C,D,ET

1 LEŚNIEWSKI29, p. 16.
2 LEŚNIEWSKI29, pp. 15–30.
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With the help of such lemmas, we see that all conditions of E44a which are true with
respect to the earlier thesis are also true with respect to the later thesis, except condition
9. Moreover, in the case of condition 9, only directive e allows us to introduce new shapes
of constants, while condition 19 of E61 assures us that these new constants can never
invalidate any variables in theses already belonging to the system. Hence we can prove
that, if A is the last thesis belonging to the system, and B is a new thesis added to the
system immediately after A in accordance with the directives, then

[C]�A ε propthp�C ε thp@AT��C ε propp@BT
We must also prove that, for each of the directives of system C , if A is the last thesis
belonging to the system, and B is a new thesis added to the system immediately after A in
accordance with the given directive, and A is propthp, then B is propp@BT. It then follows
that every thesis in system C is propthp, and therefore that every thesis in system C is
meaningful relative to itself and to all theses of system C which follow it.

7.2. System C is consistent

A system of protothetic is consistent provided it does not contain two theses, one of
which is equiform with the expression negated in the other. To prove this, we define the
auxiliary property possessed by a thesis relative to which the system is consistent:

[A]�A ε cnsisth���A ε thp�[BC]�B ε thp@AT�C ε thp@AT��B ε �BcnfA
Negt@CTUV

Axiom C1 of system C possesses this property, and it is hereditary with respect to the
directives of system C.

We can think about this more clearly if we consider the first pair of inconsistent
theses, comprising a thesis A which is not cnsisth, and which follows only theses which are
cnsisth, and a thesis which is the first thesis preceding A which contradicts A; we call this
thesis B if it is equiform with the expression A, or C if A is equiform with the expression
which it negates.

Now, how can the first inconsistent thesis be added to system C ? If any inconsistent
thesis is added to the system, we can show that there must already have existed in the
system a pair of inconsistent theses. In showing this, the following lemmas are useful:

Exhaustion Lemma. Once a variable is introduced into a semantic category, no
further constants can be defined in that category. Although each of the nine directives may
allow us to add a thesis containing a variable, only the verification directive h allows us
to introduce a variable into a category not previously containing one. Note in particular
condition 3 in E57 and condition 20 in E61, which exist precisely to impose this condition
on directives i and e respectively. If a new constant is defined, condition 21 of E61 requires
that it must differ from each previous constant in the same semantic category by having at
least one corresponding critical expression decided in a different way. On the other hand,
E51 requires that a constant must exist for each possible combination of affirmed or negated
critical theses. One could add a new definition legitimately if one defined a new constant
in the semantic category of one of its arguments, but condition 20 in E61 guarantees that
every argument of a newly defined term must belong to a category into which variables
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have already been introduced; that is, if any definition violates the exhaustion lemma, then
some previous definition must have violated the lemma. Hence no definition is the first to
violate this lemma. Hence no definition violates this lemma.

Double Negation Lemma. It cannot be the case that the first pair of inconsistent
theses contains a negation and a double negation; that is, that one of them, B, is of the

type ‘3@αΛT’, while the other thesis C is of the type ‘3A3@αΛTΛU’. For C cannot be the
axiom, which is not of this form. Hence it must be added by one of the directives. If it
was added by one of the directives a or c, then there was a previous thesis of the type
‘Λ’, which contradicts axiom C1. If C was added by directive b, then there was a previous
thesis of the type ‘α’, which contradicts B. If C was added by directive d, then there was
a previous thesis equiform with C, which contradicts B. C was not added by directive e,
since it violates condition 2 of E61. C was not added by either of the directives f or g, since

in either case we should require a previous ‘definition’ of the type ‘&pq'(3Aβ 3@pqTU)’, and this
violates condition 6 of E46. C was not added by directive h, since it is not a generalisation.
Finally C was not added by directive i, since it is not the negation of a generalisation.
Hence there is no such thesis as C in the first pair of inconsistent theses.

The first inconsistent thesis A cannot be added by directive a. If it were, then it
would have the form ‘3@αβT’, where there are previous theses of types ‘α’ and ‘β’. The
previous thesis of type ‘β’ cannot be equiform with ‘Λ’, since this would contradict the
axiom. Hence the given thesis does not have the form of a negation, and the other thesis

C of the first inconsistent pair is of the type ‘3A3@αβTΛU’. Thesis C does not have the form
of axiom C1 or of a thesis added by directives h or i. C was not added by either of the
directives f or g, since in either case we should require a previous ‘definition’ of the type

‘&pq'(3Aγ 3@pqTU)’, and this violates condition 6 of E46. C was not added by directive e, since

it violates condition 2 of E61. If there is a thesis preceding A of one of the types ‘3@αΛT’
or ‘3@αΛT’, then A is not the first inconsistent thesis, so C was not added by any of the
directives b, c, or d. Hence C was added by directive a, and there was a previous thesis of
the type ‘Λ’, which contradicts the axiom. Hence A is not the first inconsistent thesis.

The first inconsistent thesis A cannot be added by directive b. If it were, it would be of

the type ‘3A3@αβTΛU’, where there are previous theses of types ‘α’ and ‘3@βΛT’; we shall call
the last thesis D. By the double negation lemma, the other thesis B of the first inconsistent
pair is of the type ‘3@αβT’. Moreover, by the double negation lemma, the expression ‘β’ is
not equiform with ‘Λ’. Therefore thesis B does not have the form of the axiom or of a thesis
added by one of the directives b, c, g, h, or i. B was not added by directive f , since this

would require a previous ‘definition’ of the type ‘&pq'(3Aγ 3@pqTU)’, which violates condition
6 of E46. B was not added by directive d unless there was an earlier thesis of the type
‘3@αΛT’ inconsistent with the earlier thesis of the type ‘α’. B was not added by directive a
unless there was an earlier thesis of the type ‘β’ inconsistent with thesis D. Therefore B
must have been added by directive e. We can then show that the first thesis equiform with
D must have been added by directive f , and that there was a previous thesis of the type
‘3@αΛT’.

The first inconsistent thesis A cannot be added by directive c. If it were, it would be of

the type ‘3A3@αβTΛU’, where there are previous theses of types ‘3@αΛT’ and ‘β’; we shall call
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this last thesis D. By the double negation lemma, the other thesis B of the first inconsistent
pair is of the type ‘3@αβT’. Moreover, by the double negation lemma, the expression ‘β’ is
not equiform with ‘Λ’. Therefore thesis B does not have the form of the axiom or of a thesis
added by one of the directives b, c, g, h, or i. B was not added by directive f , since this

would require a previous ‘definition’ of the type ‘&pq'(3Aγ 3@pqTU)’, which violates condition 6

of E46. B was not added by directive d unless there was an earlier thesis of the type ‘3@βΛT’
inconsistent with D. B was not added by directive a unless there was an earlier thesis of
the type ‘α’ inconsistent with the earlier thesis of the type ‘3@αΛT’. Hence B was added by
directive e. From this we can show that thesis D must have been added by directive f , and
hence that there is an earlier thesis of the type ‘α’.

The first inconsistent thesis A cannot be added by directive d. For if it were, it would
have the form ‘3@αβT’, where there are earlier theses of types ‘3@αΛT’ and ‘3@βΛT’. The
expressions of type ‘β’ cannot be equiform with ‘Λ’ unless there is an earlier thesis equiform

with A; hence the first thesis contradicting A, thesis C, has the form ‘3A3@αβTΛU’. C does
not have the form of the axiom or of a thesis added by one of the directives h or i. As in
the discussion of directive a above, C cannot have been added by one of the directives e,
f , or g without violating E61 or E46. Because there is not previous thesis of type ‘Λ’, C
cannot have been added by directive a or by directive c. If C was added by directive b, then
there was an earlier thesis equiform with A. Hence C was added by directive d, and there
was an earlier thesis equiform with C, which is not possible.

The first inconsistent thesis cannot be added by directive e without violating condition
2 of explanation E61.

The first inconsistent thesis A cannot be added by directive f . For if it were, it would
be an expression of the type ‘α’, which is either a defined term or a function beginning with
a defined term, and not having the form of an equivalence. Note that ‘α’ is not equiform
with ‘Λ’ unless the definition in question violates condition 2 of explanation E61. The
corresponding substitution of the definiens of the definition is a previous thesis of the type
‘β’, as required by directive f . In either case the other thesis C of the first inconsistent pair
must have the form ‘3@αΛT’. C is neither the axiom nor added by one of the directives a, b,
e, f , h, or i. And C cannot have been added by directives c or d unless there was an earlier
thesis equiform with C. Therefore C was added by directive g, and there was an earlier
thesis negating the corresponding substitution of the definiens, that is, a thesis of the type
‘3@βΛT’.

Similarly the first inconsistent thesis cannot be added by directive g, because the
other thesis B of the first inconsistent pair must have been added by directive f , and there
would be a previous contradiction.

The first inconsistent thesis A cannot be added by directive h. For if it were, it would
have the form of a generalisation, and the other thesis C of the first inconsistent pair must
be the negation of this generalisation. C cannot, as a matter of form, be the axiom or added
by directives b, c, e, f , g, or h. If C was added by one of the directives a or d, then there
is an earlier pair of contradictory theses. Therefore C was added by directive i, and there
are two previous theses, one having the form of the negation of a substitution of A with
basic constants (required by i), and the other having the form of the same substitution of
A (required by h). Hence there is an earlier pair of inconsistent theses.
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The first inconsistent thesis A must therefore be added by directive i, and the other
thesis B of the first inconsistent pair must be a generalisation negated by A. Thesis B
cannot, as a matter of form, be the axiom or added by any of the directives a, b, c, d, f ,
g, or i. Moreover, if B was added by directive h, then there must be a previous pair of
inconsistent theses which are some substitution of B with basic constants and the negation
of the same substitution. (We know that new constants cannot be introduced after either
of these theses is added to the system because of the exhaustion lemma; hence it is not
possible to introduce a different substitution of B.) Therefore the other thesis B of the first
inconsistent pair must have been added by directive e, the directive for definitions. Thesis

A was therefore proved from a thesis D of the type ‘3A3@αβTΛU’, in which the expression ‘α’
is the substitution of the definiens of B with basic constants, while ‘β’ is the corresponding
substitution of the definiendum. Thesis D, as a matter of form, is not the axiom nor added
by any of the directives e, f , g, h, or i. And, since there cannot have been a previous
thesis of the type ‘Λ’, thesis D cannot have been added by directive a. Directive d could
not add thesis D unless there was an earlier thesis equiform with D, whose origin must
also be accounted for. If thesis D was added by directive b, then there are earlier theses of
types ‘α’ and ‘3@βΛT’, where the earliest thesis of the latter type must have been added by
directive g, so that there was also an earlier thesis of the type ‘3@αΛT’, and hence an earlier
inconsistent pair of theses. Similarly thesis D could not have been added by directive c
unless there was an earlier pair of inconsistent theses of types ‘3@αΛT’ and ‘α’.

There is accordingly no way to introduce an inconsistent thesis into system C.

7.3. System C is complete

The proof of the completeness of system C, unlike the proofs outlined in the last two
sections, makes essential use of the concept of provability. Loosely speaking, a system of
protothetic is complete if every meaningful expression can be either proved or disproved.
Complications arise because the notion of meaningful expressions changes as the system
develops.

More precisely, then, the completeness of a system of protothetic requires that

(1) At any point in the development of the system, any expression meaningful relative to
the last thesis must be able to be proved or disproved. In computative systems this
can be done without extending the notion of meaningful expressions at that point.

(2) We must be able to define at least one constant in any semantic category which can
be generated from categories which already exist in the system.

(3) We must be able to define constants which exhaust any semantic category which exists
in the system.

In other words, requirements 2 and 3 allow the notion of meaningful expression to be
extended, while 3 also includes an extension of the traditional notion of ‘functional com-
pleteness’.

The proof of completeness is related to the following important metatheorem:

Extensionality Lemma. Given a constant A for which all possible critical expres-
sions have been decided, and an expression B in the same semantic category as A, and
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having all of its ‘critical expressions’ decided ‘in the same way’ as the corresponding critical
expression for A, then for every decided meaningful expression containing A, we can decide
‘in the same way’ a corresponding meaningful expression in which one or more occurrences
of A are replaced by B3.

The extensionality lemma and requirement 1 of the completeness theorem are best
proved together. That is, the two theorems can be proved relative to a given stage of
development of system C, and then they are shown to retain their validity each time the
notion of meaningful expression is extended.

Relative to axiom C1, there are two constants, but we cannot prove critical expressions
for the term ‘3’. Every meaningful expression at this stage must contain at least one ‘Λ’,
and the axiom decides meaningful expressions containing one or two of these terms. If all
expressions containing at most n of these terms are decidable, then all expressions containing
at most n+ 1 are decidable, since each of the latter consists of an equivalence between two
decidable expressions, and depending on whether the arguments are equiform with provable
theses or with expressions negated in provable theses, we can apply one of the directives a,
b, c, or d to decide the equivalence.

The extensionality lemma can be proved relative to axiom C1 by observing that only
directives a, b, c, and d are available for adding new theses to the system without extending
the notion of meaningful expression. Given that an expression containing one or more ‘Λ’
is decided in system C by a thesis C, we can trace its proof back to axiom C1 through
a sequence of applications of these four directives. An expression of type ‘α’ satisfies the
requirements of the extensionality lemma if its negation is proved by a thesis B. From this,
we can construct a proof parallel to the proof of C, in which ‘α’ may replace any number of
terms ‘Λ’ in the intermediate theses. A ‘Λ’ is introduced into a thesis required in the proof
of C by being in the axiom, by being the second argument of an equivalence introduced by
directives b or c, or by corresponding to a ‘Λ’ in an earlier thesis. Thesis B replaces the
first ‘Λ’ with ‘α’ in the axiom. Directive d can be used with thesis B to replace the second
‘Λ’ in the axiom, in thesis B, or in any negation. In this way theses can be proved parallel
to any or all theses in C, in which any or every ‘Λ’ is replaced with ‘α’.

Hence system C is complete and extensional relative to axiom C1.

The notion of meaningful expression in system C can be extended in two ways: by
defining a new constant, and by introducing variables into an existing semantic category.

If the system is complete and extensional relative to its last thesis, and if we add a
thesis A which introduces variables into an existing semantic category, then we can show
that the system is complete and extensional relative to the new thesis. For every variable in
any thesis belongs to a semantic category which is exhausted by existing ‘basic constants’.
Moreover no category can be exhausted before the category of sentences is exhausted by
defining ‘V’ (or a synonym for ‘V’) and proving thesis C6 (or an equivalent thesis).

The system is extensional and complete for all meaningful expressions which contain
no generalisations, since such expressions are meaningful relative to the last thesis preceding

3 The definition of critical expressions in E47 and of being decided in the same way in E49 do
not apply here because the expression B is not restricted to being either a term or a function with
terms as arguments. This is avoided by defining new terms by means of explanations analogous to
those just mentioned but broader in their application.
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A. Extensionality for all meaningful expressions follows because a parallel proof can always
be constructed step by step in which a generalisation is substituted for ‘Λ’ or ‘V’.

Now, if all meaningful expressions containing n or fewer generalisations are decidable,
then any meaningful expression B containing exactly n+1 generalisations is decidable. For
B contains at least one generalisation C which is not contained in a larger generalisation.
To C there correspond a finite number of possible substitutions of C with basic constants,
and we know that every variable in C belongs to an exhausted semantic category. Moreover
every such substitution contains one generalisation less than C does, and hence n or fewer.
Therefore every such substitution of C is decidable. If all can be added as theses, then we
can prove a thesis equiform with C by directive h, the expression corresponding to B in
which C is replaced by ‘V’ is decidable, and B is decidable by the extensionality lemma.
On the other hand, if at least one substitution of C can be negated, then we can prove the
negation of C by directive i, the expression corresponding to B in which C is replaced by
‘Λ’ is decidable, and B is decidable by the extensionality lemma.

It follows that any expression meaningful with respect to A is decidable, and hence
that the system as extended by A is complete and extensional relative to A.

If the system is complete and extensional relative to its last thesis, and we add a
definition A as the next thesis in accordance with directive e, then we can show that the
system extended by definition A is complete and extensional relative to A.

First we observe that all critical expressions beginning with the newly defined term B

are decidable. For every such critical expression is a legitimate substitution of the definien-
dum of A, with basic constants replacing any variables. The corresponding substitution of
the definiens is meaningful relative to the last thesis preceding A, and is hence decidable.
Therefore the critical expression can be decided by one of the directives f or g.

Once all such critical expressions have been decided, we can prove by directives a and
d all possible substitutions of A with basic constants. If B is propositional, there is one
equivalence which is equiform with A; otherwise we can prove a generalisation equiform
with A by directive h.

If the extensionality lemma applies to any basic constants in the categories of the
arguments of a constant C, then it applies to C. For the step by step construction of a
parallel proof can be carried out except in the following cases:

(1) C is the term for equivalence, and it is introduced into a thesis by one of the directives
a, b, c, d, g, or i. Since extensionality applies to propositional constants, the arguments
of the equivalence can be decided and can replace the constants ‘V’ or ‘Λ’ in a decidable
expression.

(2) C is the term for equivalence, and it is the main functor of a thesis introduced by
directive e. We prove a thesis equiform with e as outlined above, and we construct
the corresponding thesis step by step following this proof.

(3) C is a defined term introduced into its own definition. We prove a thesis equiform
with the definition and construct the corresponding thesis as in (2).

(4) C is a defined term introduced into a thesis by directive f or g. Since all constants in
the categories of the arguments of C are extensional, the parallel expression can be
decided.



106 7.3. System C is complete

Hence the system extended by definition A is extensional.

If B is a propositional constant, then the semantic category of sentences contains no
variables, and in fact no variables may appear in any thesis preceding A. After directive f or
g has been applied once, every meaningful expression containing at most one propositional
constant has been decided. If all meaningful expressions containing at most n propositional
constants are decidable (where n > 0), then any meaningful expression C which contains n+
1 propositional constants is decidable. For such an expression must be an equivalence each
of whose arguments contains at most n propositional constants, and is therefore decidable.
Hence C can be proved or disproved by one of the directives a, b, c, or d. Hence all
expressions meaningful relative to A are decidable.

If B is not a propositional constant, then no functor exists relative to thesis A which
can meaningfully have an argument in the semantic category of B. All meaningful expres-
sions which contain no generalisations or occurrences of B are meaningful relative to the
last thesis before A, and hence decidable.

If all meaningful expressions which contain at most n generalisations or occurrences
of B are decidable, then any meaningful expression C which contains n+ 1 generalisations
or occurrences of B is decidable. For C contains either some generalisation D which is not
part of a larger generalisation, or some function E which begins with the term B, which is
not part of a generalisation, and which is not the functor of a function.

In the first case, generalisation D corresponds to a finite number of possible substitu-
tions of D with basic constants. Each of these substitutions is decidable, since it contains
at most n generalisations or occurrences of B. If all of them are true, D can be proved by
directive h, the expression corresponding to C with D replaced by ‘V’ is decidable, and C

can be decided by the extensionality lemma. Otherwise D can be disproved by directive
i, the expression corresponding to C with D replaced by ‘Λ’ is decidable, and C can be
decided by the extensionality lemma.

In the second case, function E belongs to a semantic category which is exhausted, since
it is either a sentence or an argument in some other category. Moreover, every argument
of E belongs to a semantic category which is exhausted. If no argument of E contains an
occurrence of B, then each critical expression for E corresponds to a substitution of the
definiens of A which is meaningful relative to the last thesis preceding A, and so decidable.
Hence each critical expression for E is decidable. The explanation of exhaustion assures us
that there is a constant having corresponding critical expressions decided in the same way,
and this constant is extensionally equivalent to E. The expression corresponding to C but
with this constant replacing E therefore contains at most n generalisations or occurrences
of B, and is decidable. Therefore C can be decided by the extensionality lemma.

Hence all meaningful expressions are decidable, and the system is complete and exten-
sional relative to A. This means that the system fulfills requirement (1) for completeness.

Any semantic category which exists in the system can be exhausted by defining a finite
number of additional constants. System C shows how to exhaust the semantic category of
sentences. No functor except the primitive ‘3’ can appear in any thesis before the semantic
category of all of its arguments is exhausted, and the first definition added after the axiom
effectively removes this exception. We have also seen in section 4.3 how one may define
implication, the term ‘7’, in our system of computative protothetic. Using implication
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and the primitive terms, we can construct a definition of a constant which differs from
any existing constant in only one specified critical expression, as described by explanation
E50. Directive e allows us to add this definition unless there is already a constant whose
critical expressions are all decided in the way we wish them to be. Such a definition may,
for example have the form&ab . . . c'(3B3AαΦ<ab . . . c>UΩ<ab . . . c>V)
in which ‘Φ’ is the existing function, and ‘α’ is an expression which is true except when
the arguments a, b, . . . , and c are extensionally equivalent to the corresponding constant
arguments in the specified critical expression. For example, the expression ‘α’ may have
the form 7DA17CA27B. . .7AAn−13@AnΛTU. . .VWX
in which each antecedent Ax is true only if the corresponding argument of the new constant
is extensionally equivalent to the corresponding argument of the specified critical expression.
For example, An may have the form&xy . . . z'(3Aφn<xy . . . z>Cn<xy . . . z>U)
in which φn is the nth argument of the defined functor, and Cn is the corresponding ar-
gument in the specified critical expression. For example, if it is required to introduce into
system C at some point after C99 a functor ‘2’ which differs from the primitive term ‘3’
only in the critical expression ‘3@VVT’, we could write the definition&pq'(3D3C7B7@pVT3A3@qVTΛUV3@pqTW2@pqTX)

The new definition clearly fulfills the requirements, and in a similar fashion any con-
stant required by E51 can be defined. Therefore every semantic category in the system can
be exhausted, and the system fulfills requirement (3) for completeness.

We should be able to define a term in a semantic category which takes any number of
arguments in any existing categories and which forms a function belonging to any existing
category. To define such a constant, we need only introduce into the system a variable in
each of the argument categories, and write a definition. As in the discussion of requirement
(3), we define enough constants to exhaust each argument category, and then introduce by
directive h a variable into each argument category. Hence the system fulfills all requirements
for completeness.

7.4. Equivalence with standard protothetic

We have not gone into great detail about the standard system of protothetic �5.
Without such detail a full exposition — even a full informal exposition — of the relationship
between �5 and our system C is not very intelligible. For this reason we shall look in this
section only at those parts of the exposition which may shed further light on system C.

In a sense systems C and �5 are equivalent, but it is difficult to set up a correspon-
dence between them, since it cannot be a one-to-one correspondence. For example, in�5 we



108 7.4. Equivalence with standard protothetic

can define any number of synonymous constants, but in system C we cannot define a single
pair of synonyms. To determine whether one or more constants in standard protothetic
correspond to a constant in computative protothetic, we must sometimes investigate the
provability of a large number of theses; we cannot give a simple ‘structural’ correspondence.
A full, formal explanation of the correspondence between the two systems is beyond the
scope of the present work.

Once a correspondence has been set up, in order to prove the equivalence of the two
systems, we must prove that theses corresponding to the axioms of each system are true
in the other, and that the directives of each system are valid in the other. Thus, recalling
my modification to Leśniewski’s metatheorem L1 discussed in section 3.7, we can prove in
system C that

(1) Some axiom system for system � is true.

(2) The four laws of implication are true.

(3) The metarule M5 is valid.

(4) The directives of system �5 are valid.

Requirement (1) is satisfied by thesis C25. Requirement (2) is satisfied by theses C96
through C99. If the directives of sytem �5 are valid, then metarule M5 can be established
using theses C82 and C94. The majority of the burden then falls on proving the validity of
the five directives of �5:

(α) Since system C is consistent and complete, the detachment directive is valid. If
there are two theses of types ‘3@αβT’ and ‘α’ respectively, then the expression ‘β’ is
meaningful and decidable. If a thesis of the type ‘3@βΛT’ is provable, then by directive

b we can prove a thesis of the type ‘3A3@αβTΛU’, and the system is inconsistent. Hence

‘3@βΛT’ is not provable, and ‘β’ is provable.

(β) To prove that the substitution directive is valid we require directive h and the fact
that system C is consistent, complete, and extensional.

(γ) To prove the validity of partitioning the quantifier, we need to use directives a, d, h,
and i, together with the proofs of consistency and completeness.

(δ) The definition directive in �5 is much more ‘liberal’ than that of system C. The
completeness of the latter system shows that the expressions corresponding to basic
substitutions of the definiens of an �5 definition are decidable in system C, and that
there is at least one constant with all of its corresponding critical expressions decided
in the same way.

(ε) The directive for writing theses of extensionality is valid in system C because of its
consistency and completeness, and because of directives a, d, h, and i.

In proving that the directives of system C are valid in �5, all directives are fairly
simple except h and i. In particular, a thesis corresponding to a definition introduced by
directive e is always a valid definition in �5, provided we chose an available shape for the
new constant. The validity of directive i follows from Tarski’s discoveries about quantifiers
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in standard protothetic4. The validity of directive h follows from other results of Tarski5,
but the proof is quite tedious.

Once we have demonstrated that systems C and �5 are equivalent, it follows that
system �5 is consistent and complete. Note that the system �5 to which I refer has been
modified from that described in LEŚNIEWSKI29 so that words equiform with the primitive
term ‘3’ are not allowed to be used in my system as a variable.

4 LEŚNIEWSKI29, p. 39–41.
5 See TARSKI56, p. 22, theorem D2, and LEŚNIEWSKI29, pp. 41–4.
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niewskiego’, Fragmenty Filozoficzne, Warsaw, 1934, pp. 144–60. An English
translation of this article appeared in MCCALL67, pp. 188–200.
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